Learning Energy-Based Models by Diffusion Recovery Likelihood

Overview

Learning Energy-Based Models by Diffusion Recovery Likelihood

Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma

Paper: https://arxiv.org/pdf/2012.08125

Samples generated by our model

Requirements

Experiments can be run on a single GPU or Google Cloud TPU v3-8. Requires python >= 3.5. To install dependencies:

pip install -r requirements.txt

To compute FID/inception scores, download the pre-computed statistics of datasets from: https://drive.google.com/file/d/1QOLyYHESflcdZu8CsBLZohZzC95HyukK/view?usp=sharing, unzip the file and put the folder in this repo.

Train with 1 GPU

CIFAR10
python main.py --num_res_blocks=8 --n_batch_train=256 
CelebA
python main.py --problem=celeba --num_res_blocks=6 --beta_1=0.5 --batch_size=128
LSUN church_outdoor 64x64 / LSUN bedroom 64x64
python main.py --problem=[lsun_church64/lsun_bedroom64] --batch_size=128
LSUN church_outdoor 128x128
python main.py --problem=lsun_church128 --beta_1=0.5
LSUN bedroom 128x128
python main.py --problem=lsun_bedroom128 --beta_1=0.5 --num_res_blocks=5
Compute full FID / IS scores after training on CIFAR10
python main.py --eval --num_res_blocks=8 --noise_scale=0.99 --fid_n_batch=2000

For faster training, reduce the value of num_res_blocks.

Train with Google Cloud TPU

Add --tpu=True to the above scripts for 1 GPU. Also need to set --tpu_name and --tpu_zone as shown in Google Cloud.

Pretrained models

https://drive.google.com/file/d/1eneA6T5jQIyVFLFSOrSfJvDeUJJMh9xk/view?usp=sharing

This code is for T6 setting. Will upload T1k setting soon!

Citation

If you find our work helpful to your research, please cite:

@article{gao2020learning,
  title={Learning Energy-Based Models by Diffusion Recovery Likelihood},
  author={Gao, Ruiqi and Song, Yang and Poole, Ben and Wu, Ying Nian and Kingma, Diederik P},
  journal={arXiv preprint arXiv:2012.08125},
  year={2020}
}
Owner
Ruiqi Gao
Ph.D student at [email protected]. Research interest is machine learning, computer vision and ar
Ruiqi Gao
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
PyTorch code for: Learning to Generate Grounded Visual Captions without Localization Supervision

Learning to Generate Grounded Visual Captions without Localization Supervision This is the PyTorch implementation of our paper: Learning to Generate G

Chih-Yao Ma 41 Nov 17, 2022
Plugin adapted from Ultralytics to bring YOLOv5 into Napari

napari-yolov5 Plugin adapted from Ultralytics to bring YOLOv5 into Napari. Training and detection can be done using the GUI. Training dataset must be

2 May 05, 2022
Source code of generalized shuffled linear regression

Generalized-Shuffled-Linear-Regression Code for the ICCV 2021 paper: Generalized Shuffled Linear Regression. Authors: Feiran Li, Kent Fujiwara, Fumio

FEI 7 Oct 26, 2022
This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark

SILG This repository contains source code for the Situated Interactive Language Grounding (SILG) benchmark. If you find this work helpful, please cons

Victor Zhong 17 Nov 27, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
A MNIST-like fashion product database. Benchmark

Fashion-MNIST Table of Contents Why we made Fashion-MNIST Get the Data Usage Benchmark Visualization Contributing Contact Citing Fashion-MNIST License

Zalando Research 10.5k Jan 08, 2023
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
Framework for joint representation learning, evaluation through multimodal registration and comparison with image translation based approaches

CoMIR: Contrastive Multimodal Image Representation for Registration Framework 🖼 Registration of images in different modalities with Deep Learning 🤖

Methods for Image Data Analysis - MIDA 55 Dec 09, 2022
MPViT:Multi-Path Vision Transformer for Dense Prediction

MPViT : Multi-Path Vision Transformer for Dense Prediction This repository inlcu

Youngwan Lee 272 Dec 20, 2022
This repository contains the code for the CVPR 2021 paper "GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields"

GIRAFFE: Representing Scenes as Compositional Generative Neural Feature Fields Project Page | Paper | Supplementary | Video | Slides | Blog | Talk If

1.1k Dec 30, 2022
Opinionated code formatter, just like Python's black code formatter but for Beancount

beancount-black Opinionated code formatter, just like Python's black code formatter but for Beancount Try it out online here Features MIT licensed - b

Launch Platform 16 Oct 11, 2022
A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking

PoseRBPF: A Rao-Blackwellized Particle Filter for 6D Object Pose Tracking PoseRBPF Paper Self-supervision Paper Pose Estimation Video Robot Manipulati

NVIDIA Research Projects 107 Dec 25, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Final project for Intro to CS class.

Financial Analysis Web App https://share.streamlit.io/mayurk1/fin-web-app-final-project/webApp.py 1. Project Description This project is a technical a

Mayur Khanna 1 Dec 10, 2021
PyTorch implementation of SimSiam: Exploring Simple Siamese Representation Learning

SimSiam: Exploring Simple Siamese Representation Learning This is a PyTorch implementation of the SimSiam paper: @Article{chen2020simsiam, author =

Facebook Research 834 Dec 30, 2022
The comma.ai Calibration Challenge!

Welcome to the comma.ai Calibration Challenge! Your goal is to predict the direction of travel (in camera frame) from provided dashcam video. This rep

comma.ai 697 Jan 05, 2023
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
Dados coletados e programas desenvolvidos no processo de iniciação científica

Iniciacao_cientifica_FAPESP_2020-14845-6 Dados coletados e programas desenvolvidos no processo de iniciação científica Os arquivos .py são os programa

1 Jan 10, 2022