Learning Energy-Based Models by Diffusion Recovery Likelihood

Overview

Learning Energy-Based Models by Diffusion Recovery Likelihood

Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, Diederik P. Kingma

Paper: https://arxiv.org/pdf/2012.08125

Samples generated by our model

Requirements

Experiments can be run on a single GPU or Google Cloud TPU v3-8. Requires python >= 3.5. To install dependencies:

pip install -r requirements.txt

To compute FID/inception scores, download the pre-computed statistics of datasets from: https://drive.google.com/file/d/1QOLyYHESflcdZu8CsBLZohZzC95HyukK/view?usp=sharing, unzip the file and put the folder in this repo.

Train with 1 GPU

CIFAR10
python main.py --num_res_blocks=8 --n_batch_train=256 
CelebA
python main.py --problem=celeba --num_res_blocks=6 --beta_1=0.5 --batch_size=128
LSUN church_outdoor 64x64 / LSUN bedroom 64x64
python main.py --problem=[lsun_church64/lsun_bedroom64] --batch_size=128
LSUN church_outdoor 128x128
python main.py --problem=lsun_church128 --beta_1=0.5
LSUN bedroom 128x128
python main.py --problem=lsun_bedroom128 --beta_1=0.5 --num_res_blocks=5
Compute full FID / IS scores after training on CIFAR10
python main.py --eval --num_res_blocks=8 --noise_scale=0.99 --fid_n_batch=2000

For faster training, reduce the value of num_res_blocks.

Train with Google Cloud TPU

Add --tpu=True to the above scripts for 1 GPU. Also need to set --tpu_name and --tpu_zone as shown in Google Cloud.

Pretrained models

https://drive.google.com/file/d/1eneA6T5jQIyVFLFSOrSfJvDeUJJMh9xk/view?usp=sharing

This code is for T6 setting. Will upload T1k setting soon!

Citation

If you find our work helpful to your research, please cite:

@article{gao2020learning,
  title={Learning Energy-Based Models by Diffusion Recovery Likelihood},
  author={Gao, Ruiqi and Song, Yang and Poole, Ben and Wu, Ying Nian and Kingma, Diederik P},
  journal={arXiv preprint arXiv:2012.08125},
  year={2020}
}
Owner
Ruiqi Gao
Ph.D student at [email protected]. Research interest is machine learning, computer vision and ar
Ruiqi Gao
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
Optimizing DR with hard negatives and achieving SOTA first-stage retrieval performance on TREC DL Track (SIGIR 2021 Full Paper).

Optimizing Dense Retrieval Model Training with Hard Negatives Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min Zhang, Shaoping Ma This repo provi

Jingtao Zhan 99 Dec 27, 2022
This repository contains a toolkit for collecting, labeling and tracking object keypoints

This repository contains a toolkit for collecting, labeling and tracking object keypoints. Object keypoints are semantic points in an object's coordinate frame.

ETHZ ASL 13 Dec 12, 2022
Unofficial PyTorch implementation of TokenLearner by Google AI

tokenlearner-pytorch Unofficial PyTorch implementation of TokenLearner by Ryoo et al. from Google AI (abs, pdf) Installation You can install TokenLear

Rishabh Anand 46 Dec 20, 2022
Official Pytorch implementation of MixMo framework

MixMo: Mixing Multiple Inputs for Multiple Outputs via Deep Subnetworks Official PyTorch implementation of the MixMo framework | paper | docs Alexandr

79 Nov 07, 2022
Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation

Leveraging Instance-, Image- and Dataset-Level Information for Weakly Supervised Instance Segmentation This paper has been accepted and early accessed

Yun Liu 39 Sep 20, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
Implementation of Convolutional LSTM in PyTorch.

ConvLSTM_pytorch This file contains the implementation of Convolutional LSTM in PyTorch made by me and DavideA. We started from this implementation an

Andrea Palazzi 1.3k Dec 29, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
Image data augmentation scheduler for albumentations transforms

albu_scheduler Scheduler for albumentations transforms based on PyTorch schedulers interface Usage TransformMultiStepScheduler import albumentations a

19 Aug 04, 2021
PyTorch implementation of CloudWalk's recent work DenseBody

densebody_pytorch PyTorch implementation of CloudWalk's recent paper DenseBody. Note: For most recent updates, please check out the dev branch. Update

Lingbo Yang 401 Nov 19, 2022
Continual World is a benchmark for continual reinforcement learning

Continual World Continual World is a benchmark for continual reinforcement learning. It contains realistic robotic tasks which come from MetaWorld. Th

41 Dec 24, 2022
A package related to building quasi-fibration symmetries

qf A package related to building quasi-fibration symmetries. If you'd like to learn more about how it works, see the brief explanation and References

Paolo Boldi 1 Dec 01, 2021
This is the official code of our paper "Diversity-based Trajectory and Goal Selection with Hindsight Experience Relay" (PRICAI 2021)

Diversity-based Trajectory and Goal Selection with Hindsight Experience Replay This is the official implementation of our paper "Diversity-based Traje

Tianhong Dai 6 Jul 18, 2022
TensorFlow 101: Introduction to Deep Learning for Python Within TensorFlow

TensorFlow 101: Introduction to Deep Learning I have worked all my life in Machine Learning, and I've never seen one algorithm knock over its benchmar

Sefik Ilkin Serengil 896 Jan 04, 2023
Official PyTorch Implementation of Convolutional Hough Matching Networks, CVPR 2021 (oral)

Convolutional Hough Matching Networks This is the implementation of the paper "Convolutional Hough Matching Network" by J. Min and M. Cho. Implemented

Juhong Min 70 Nov 22, 2022
End-to-End Referring Video Object Segmentation with Multimodal Transformers

End-to-End Referring Video Object Segmentation with Multimodal Transformers This repo contains the official implementation of the paper: End-to-End Re

608 Dec 30, 2022
Deploy optimized transformer based models on Nvidia Triton server

🤗 Hugging Face Transformer submillisecond inference 🤯 and deployment on Nvidia Triton server Yes, you can perfom inference with transformer based mo

Lefebvre Sarrut Services 1.2k Jan 05, 2023
The Adapter-Bot: All-In-One Controllable Conversational Model

The Adapter-Bot: All-In-One Controllable Conversational Model This is the implementation of the paper: The Adapter-Bot: All-In-One Controllable Conver

CAiRE 37 Nov 04, 2022