This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

Related tags

Deep LearningSIMAT
Overview

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger Schwenk, Matthijs Douze, Matthieu Cord)

The inspiration for this work are the geometric properties of word embeddings, such as Queen ~ Woman + (King - Man). We extend this idea to multimodal embedding spaces (like CLIP), which let us semantically edit images via "delta vectors".

Transformed images can then be retrieved in a dataset of images.

The SIMAT Dataset

We build SIMAT, a dataset to evaluate the task of text-driven image transformation, for simple images that can be characterized by a single subject-relation-object annotation. A transformation query is a pair (image, query) where the query asks to change the subject, the relation or the object in the input image. SIMAT contains ~6k images and an average of 3 transformation queries per image.

The goal is to retrieve an image in the dataset that corresponds to the query specifications. We use OSCAR as an oracle to check whether retrieved images are correct with respect to the expected modifications.

Examples

Below are a few examples that are in the dataset, and images that were retrieved for our best-performing algorithm.

Download dataset

The SIMAT database is composed of crops of images from Visual Genome. You first need to install Visual Genome and then run the following command :

python prepare_dataset.py --VG_PATH=/path/to/visual/genome

Perform inference with CLIP ViT-B/32

In this example, we use the CLIP ViT-B/32 model to edit an image. Note that the dataset of clip embeddings is pre-computed.

import clip
from torchvision import datasets
from PIL import Image
from IPython.display import display

#hack to normalize tensors easily
torch.Tensor.normalize = lambda x:x/x.norm(dim=-1, keepdim=True)

# database to perform the retrieval step
dataset = datasets.ImageFolder('simat_db/images/')
db = torch.load('data/clip_simat.pt').float()

model, prep = clip.load('ViT-B/32', device='cuda:0', jit=False)

image = Image.open('simat_db/images/A cat sitting on a grass/98316.jpg')
img_enc = model.encode_image(prep(image).unsqueeze(0).to('cuda:0')).float().cpu().detach().normalize()

txt = ['cat', 'dog']
txt_enc = model.encode_text(clip.tokenize(txt).to('cuda:0')).float().cpu().detach().normalize()

# optionally, we can apply a linear layer on top of the embeddings
heads = torch.load(f'data/head_clip_t=0.1.pt')
img_enc = heads['img_head'](img_enc).normalize()
txt_enc = heads['txt_head'](txt_enc).normalize()
db = heads['img_head'](db).normalize()


# now we perform the transformation step
lbd = 1
target_enc = img_enc + lbd * (txt_enc[1] - txt_enc[0])


retrieved_idx = (db @ target_enc.float().T).argmax(0).item()


display(dataset[retrieved_idx][0])

Compute SIMAT scores with CLIP

You can run the evaluation script with the following command:

python eval.py --backbone clip --domain dev --tau 0.01 --lbd 1 2

It automatically load the adaptation layer relative to the value of tau.

Train adaptation layers on COCO

In this part, you can train linear layers after the CLIP encoder on the COCO dataset, to get a better alignment. Here is an example :

python adaptation.py --backbone ViT-B/32 --lr 0.001 --tau 0.1 --batch_size 512

Citation

If you find this paper or dataset useful for your research, please use the following.

@article{gco1embedding,
  title={Embedding Arithmetic for text-driven Image Transformation},
  author={Guillaume Couairon, Matthieu Cord, Matthijs Douze, Holger Schwenk},
  journal={arXiv preprint arXiv:2112.03162},
  year={2021}
}

References

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. Learning Transferable Visual Models From Natural Language Supervision, OpenAI 2021

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, Fei-Fei Li. Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations, IJCV 2017

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu, Li Dong, Furu Wei, Yejin Choi, Jianfeng Gao, Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks, ECCV 2020

License

The SIMAT is released under the MIT license. See LICENSE for details.

Owner
Meta Research
Meta Research
Official project repository for 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination'

NCAE_UAD Official project repository of 'Normality-Calibrated Autoencoder for Unsupervised Anomaly Detection on Data Contamination' Abstract In this p

Jongmin Andrew Yu 2 Feb 10, 2022
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Sequence-tagging using deep learning

Classification using Deep Learning Requirements PyTorch version = 1.9.1+cu111 Python version = 3.8.10 PyTorch-Lightning version = 1.4.9 Huggingface

Vineet Kumar 2 Dec 20, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
Codes and pretrained weights for winning submission of 2021 Brain Tumor Segmentation (BraTS) Challenge

Winning submission to the 2021 Brain Tumor Segmentation Challenge This repo contains the codes and pretrained weights for the winning submission to th

94 Dec 28, 2022
A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis

A Multi-attribute Controllable Generative Model for Histopathology Image Synthesis This is the pytorch implementation for our MICCAI 2021 paper. A Mul

Jiarong Ye 7 Apr 04, 2022
Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals This repo contains the Pytorch implementation of our paper: Unsupervised Seman

Wouter Van Gansbeke 335 Dec 28, 2022
Code for ICCV2021 paper SPEC: Seeing People in the Wild with an Estimated Camera

SPEC: Seeing People in the Wild with an Estimated Camera [ICCV 2021] SPEC: Seeing People in the Wild with an Estimated Camera, Muhammed Kocabas, Chun-

Muhammed Kocabas 187 Dec 26, 2022
Tools for manipulating UVs in the Blender viewport.

UV Tool Suite for Blender A set of tools to make editing UVs easier in Blender. These tools can be accessed wither through the Kitfox - UV panel on th

35 Oct 29, 2022
CLADE - Efficient Semantic Image Synthesis via Class-Adaptive Normalization (TPAMI 2021)

Efficient Semantic Image Synthesis via Class-Adaptive Normalization (Accepted by TPAMI)

tzt 49 Nov 17, 2022
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
This repository is a basic Machine Learning train & validation Template (Using PyTorch)

pytorch_ml_template This repository is a basic Machine Learning train & validation Template (Using PyTorch) TODO Markdown 사용법 Build Docker 사용법 Anacond

1 Sep 15, 2022
An ML & Correlation platform for transforming disparate data points of interest into usable intelligence.

SSIDprobeCollector An ML & Correlation platform for transforming disparate data points of interest into usable intelligence. At a High level the platf

Bill Reyor 1 Jan 30, 2022
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
PyTorch Implement of Context Encoders: Feature Learning by Inpainting

Context Encoders: Feature Learning by Inpainting This is the Pytorch implement of CVPR 2016 paper on Context Encoders 1) Semantic Inpainting Demo Inst

321 Dec 25, 2022
ANEA: Distant Supervision for Low-Resource Named Entity Recognition

ANEA: Distant Supervision for Low-Resource Named Entity Recognition ANEA is a tool to automatically annotate named entities in unlabeled text based on

Saarland University Spoken Language Systems Group 15 Mar 30, 2022
[cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation

PS-MT [cvpr22] Perturbed and Strict Mean Teachers for Semi-supervised Semantic Segmentation by Yuyuan Liu, Yu Tian, Yuanhong Chen, Fengbei Liu, Vasile

Yuyuan Liu 132 Jan 03, 2023
Scaling Vision with Sparse Mixture of Experts

Scaling Vision with Sparse Mixture of Experts This repository contains the code for training and fine-tuning Sparse MoE models for vision (V-MoE) on I

Google Research 290 Dec 25, 2022
Adaout is a practical and flexible regularization method with high generalization and interpretability

Adaout Adaout is a practical and flexible regularization method with high generalization and interpretability. Requirements python 3.6 (Anaconda versi

lambett 1 Feb 09, 2022
PyTorch implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The official PyTorch implementation of Neural View S

Angtian Wang 20 Oct 09, 2022