This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

Related tags

Deep LearningSIMAT
Overview

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger Schwenk, Matthijs Douze, Matthieu Cord)

The inspiration for this work are the geometric properties of word embeddings, such as Queen ~ Woman + (King - Man). We extend this idea to multimodal embedding spaces (like CLIP), which let us semantically edit images via "delta vectors".

Transformed images can then be retrieved in a dataset of images.

The SIMAT Dataset

We build SIMAT, a dataset to evaluate the task of text-driven image transformation, for simple images that can be characterized by a single subject-relation-object annotation. A transformation query is a pair (image, query) where the query asks to change the subject, the relation or the object in the input image. SIMAT contains ~6k images and an average of 3 transformation queries per image.

The goal is to retrieve an image in the dataset that corresponds to the query specifications. We use OSCAR as an oracle to check whether retrieved images are correct with respect to the expected modifications.

Examples

Below are a few examples that are in the dataset, and images that were retrieved for our best-performing algorithm.

Download dataset

The SIMAT database is composed of crops of images from Visual Genome. You first need to install Visual Genome and then run the following command :

python prepare_dataset.py --VG_PATH=/path/to/visual/genome

Perform inference with CLIP ViT-B/32

In this example, we use the CLIP ViT-B/32 model to edit an image. Note that the dataset of clip embeddings is pre-computed.

import clip
from torchvision import datasets
from PIL import Image
from IPython.display import display

#hack to normalize tensors easily
torch.Tensor.normalize = lambda x:x/x.norm(dim=-1, keepdim=True)

# database to perform the retrieval step
dataset = datasets.ImageFolder('simat_db/images/')
db = torch.load('data/clip_simat.pt').float()

model, prep = clip.load('ViT-B/32', device='cuda:0', jit=False)

image = Image.open('simat_db/images/A cat sitting on a grass/98316.jpg')
img_enc = model.encode_image(prep(image).unsqueeze(0).to('cuda:0')).float().cpu().detach().normalize()

txt = ['cat', 'dog']
txt_enc = model.encode_text(clip.tokenize(txt).to('cuda:0')).float().cpu().detach().normalize()

# optionally, we can apply a linear layer on top of the embeddings
heads = torch.load(f'data/head_clip_t=0.1.pt')
img_enc = heads['img_head'](img_enc).normalize()
txt_enc = heads['txt_head'](txt_enc).normalize()
db = heads['img_head'](db).normalize()


# now we perform the transformation step
lbd = 1
target_enc = img_enc + lbd * (txt_enc[1] - txt_enc[0])


retrieved_idx = (db @ target_enc.float().T).argmax(0).item()


display(dataset[retrieved_idx][0])

Compute SIMAT scores with CLIP

You can run the evaluation script with the following command:

python eval.py --backbone clip --domain dev --tau 0.01 --lbd 1 2

It automatically load the adaptation layer relative to the value of tau.

Train adaptation layers on COCO

In this part, you can train linear layers after the CLIP encoder on the COCO dataset, to get a better alignment. Here is an example :

python adaptation.py --backbone ViT-B/32 --lr 0.001 --tau 0.1 --batch_size 512

Citation

If you find this paper or dataset useful for your research, please use the following.

@article{gco1embedding,
  title={Embedding Arithmetic for text-driven Image Transformation},
  author={Guillaume Couairon, Matthieu Cord, Matthijs Douze, Holger Schwenk},
  journal={arXiv preprint arXiv:2112.03162},
  year={2021}
}

References

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, Ilya Sutskever. Learning Transferable Visual Models From Natural Language Supervision, OpenAI 2021

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, Fei-Fei Li. Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations, IJCV 2017

Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei Hu, Lei Zhang, Lijuan Wang, Houdong Hu, Li Dong, Furu Wei, Yejin Choi, Jianfeng Gao, Oscar: Object-Semantics Aligned Pre-training for Vision-Language Tasks, ECCV 2020

License

The SIMAT is released under the MIT license. See LICENSE for details.

Owner
Meta Research
Meta Research
This project uses ViT to perform image classification tasks on DATA set CIFAR10.

Vision-Transformer-Multiprocess-DistributedDataParallel-Apex Introduction This project uses ViT to perform image classification tasks on DATA set CIFA

Kaicheng Yang 3 Jun 03, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition

PyTorch implementation of CDistNet: Perceiving Multi-Domain Character Distance for Robust Text Recognition The unofficial code of CDistNet. Now, we ha

25 Jul 20, 2022
Code for Overinterpretation paper Overinterpretation reveals image classification model pathologies

Overinterpretation This repository contains the code for the paper: Overinterpretation reveals image classification model pathologies Authors: Brandon

Gifford Lab, MIT CSAIL 17 Dec 10, 2022
Combinatorially Hard Games where the levels are procedurally generated

puzzlegen Implementation of two procedurally simulated environments with gym interfaces. IceSlider: the agent needs to reach and stop on the pink squa

Autonomous Learning Group 3 Jun 26, 2022
Facestar dataset. High quality audio-visual recordings of human conversational speech.

Facestar Dataset Description Existing audio-visual datasets for human speech are either captured in a clean, controlled environment but contain only a

Meta Research 87 Dec 21, 2022
Automated detection of anomalous exoplanet transits in light curve data.

Automatically detecting anomalous exoplanet transits This repository contains the source code for the paper "Automatically detecting anomalous exoplan

1 Feb 01, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
This project provides an unsupervised framework for mining and tagging quality phrases on text corpora with pretrained language models (KDD'21).

UCPhrase: Unsupervised Context-aware Quality Phrase Tagging To appear on KDD'21...[pdf] This project provides an unsupervised framework for mining and

Xiaotao Gu 146 Dec 22, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
Simple-Image-Classification - Simple Image Classification Code (PyTorch)

Simple-Image-Classification Simple Image Classification Code (PyTorch) Yechan Kim This repository contains: Python3 / Pytorch code for multi-class ima

Yechan Kim 8 Oct 29, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022
PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT.

MoCo v3 for Self-supervised ResNet and ViT Introduction This is a PyTorch implementation of MoCo v3 for self-supervised ResNet and ViT. The original M

Facebook Research 887 Jan 08, 2023
(NeurIPS '21 Spotlight) IQ-Learn: Inverse Q-Learning for Imitation

Inverse Q-Learning (IQ-Learn) Official code base for IQ-Learn: Inverse soft-Q Learning for Imitation, NeurIPS '21 Spotlight IQ-Learn is an easy-to-use

Divyansh Garg 102 Dec 20, 2022
Run PowerShell command without invoking powershell.exe

PowerLessShell PowerLessShell rely on MSBuild.exe to remotely execute PowerShell scripts and commands without spawning powershell.exe. You can also ex

Mr.Un1k0d3r 1.2k Jan 03, 2023
Code Release for Learning to Adapt to Evolving Domains

EAML Code release for "Learning to Adapt to Evolving Domains" (NeurIPS 2020) Prerequisites PyTorch = 0.4.0 (with suitable CUDA and CuDNN version) tor

23 Dec 07, 2022
Python package for visualizing the loss landscape of parameterized quantum algorithms.

orqviz A Python package for easily visualizing the loss landscape of Variational Quantum Algorithms by Zapata Computing Inc. orqviz provides a collect

Zapata Computing, Inc. 75 Dec 30, 2022
Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP

Segmentation in Style: Unsupervised Semantic Image Segmentation with Stylegan and CLIP Abstract: We introduce a method that allows to automatically se

Daniil Pakhomov 134 Dec 19, 2022