Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals.

Overview

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals

This repo contains the Pytorch implementation of our paper:

Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals

Wouter Van Gansbeke, Simon Vandenhende, Stamatios Georgoulis, and Luc Van Gool.

PWC

Contents

  1. Introduction
  2. Installation
  3. Training
  4. Evaluation
  5. Model Zoo
  6. Citation

Introduction

Being able to learn dense semantic representations of images without supervision is an important problem in computer vision. However, despite its significance, this problem remains rather unexplored, with a few exceptions that considered unsupervised semantic segmentation on small-scale datasets with a narrow visual domain. We make a first attempt to tackle the problem on datasets that have been traditionally utilized for the supervised case (e.g. PASCAL VOC). To achieve this, we introduce a novel two-step framework that adopts a predetermined prior in a contrastive optimization objective to learn pixel embeddings. Additionally, we argue about the importance of having a prior that contains information about objects, or their parts, and discuss several possibilities to obtain such a prior in an unsupervised manner. In particular, we adopt a mid-level visual prior to group pixels together and contrast the obtained object mask porposals. For this reason we name the method MaskContrast.

Installation

The Python code runs with recent Pytorch versions, e.g. 1.4. Assuming Anaconda, the most important packages can be installed as:

conda install pytorch=1.4.0 torchvision=0.5.0 cudatoolkit=10.0 -c pytorch
conda install -c conda-forge opencv           # For image transformations
conda install matplotlib scipy scikit-learn   # For evaluation
conda install pyyaml easydict                 # For using config files
conda install termcolor                       # For colored print statements

We refer to the requirements.txt file for an overview of the packages in the environment we used to produce our results. The code was run on 2 Tesla V100 GPUs.

Training MaskContrast

Setup

The PASCAL VOC dataset will be downloaded automatically when running the code for the first time. The dataset includes the precomputed supervised and unsupervised saliency masks, following the implementation from the paper.

The following files (in the pretrain/ and segmentation/ directories) need to be adapted in order to run the code on your own machine:

  • Change the file path for the datasets in data/util/mypath.py. The PASCAL VOC dataset will be saved to this path.
  • Specify the output directory in configs/env.yml. All results will be stored under this directory.

Pre-train model

The training procedure consists of two steps. First, pixels are grouped together based upon a mid-level visual prior (saliency is used). Then, a pre-training strategy is proposed to contrast the pixel-embeddings of the obtained object masks. The code for the pre-training can be found in the pretrain/ directory and the configuration files are located in the pretrain/configs/ directory. You can choose to run the model with the masks from the supervised or unsupervised saliency model. For example, run the following command to perform the pre-training step on PASCAL VOC with the supervised saliency model:

cd pretrain
python main.py --config_env configs/env.yml --config_exp configs/VOCSegmentation_supervised_saliency_model.yml

Evaluation

Linear Classifier (LC)

We freeze the weights of the pre-trained model and train a 1 x 1 convolutional layer to predict the class assignments from the generated feature representations. Since the discriminative power of a linear classifier is low, the pixel embeddings need to be informative of the semantic class to solve the task in this way. To train the classifier run the following command:

cd segmentation
python linear_finetune.py --config_env configs/env.yml --config_exp configs/linear_finetune/linear_finetune_VOCSegmentation_supervised_saliency.yml

Note, make sure that the pretraining variable in linear_finetune_VOCSegmentation_supervised_saliency.yml points to the location of your pre-trained model. You should get the following results:

mIoU is 63.95
IoU class background is 90.95
IoU class aeroplane is 83.78
IoU class bicycle is 30.66
IoU class bird is 78.79
IoU class boat is 64.57
IoU class bottle is 67.31
IoU class bus is 84.24
IoU class car is 76.77
IoU class cat is 79.10
IoU class chair is 21.24
IoU class cow is 66.45
IoU class diningtable is 46.63
IoU class dog is 73.25
IoU class horse is 62.61
IoU class motorbike is 69.66
IoU class person is 72.30
IoU class pottedplant is 40.15
IoU class sheep is 74.70
IoU class sofa is 30.43
IoU class train is 74.67
IoU class tvmonitor is 54.66

Unsurprisingly, the model has not learned a good representation for every class since some classes are hard to distinguish, e.g. chair or sofa.

We visualize a few examples after CRF post-processing below.

Clustering (K-means)

The feature representations are clustered with K-means. If the pixel embeddings are disentangled according to the defined class labels, we can match the predicted clusters with the ground-truth classes using the Hungarian matching algorithm.

cd segmentation
python kmeans.py --config_env configs/env.yml --config_exp configs/kmeans/kmeans_VOCSegmentation_supervised_saliency_model.yml

Remarks: Note that we perform the complete K-means fitting on the validation set to save memory and that the reported results were averaged over 5 different runs. You should get the following results (21 clusters):

IoU class background is 88.17
IoU class aeroplane is 77.41
IoU class bicycle is 26.18
IoU class bird is 68.27
IoU class boat is 47.89
IoU class bottle is 56.99
IoU class bus is 80.63
IoU class car is 66.80
IoU class cat is 46.13
IoU class chair is 0.73
IoU class cow is 0.10
IoU class diningtable is 0.57
IoU class dog is 35.93
IoU class horse is 48.68
IoU class motorbike is 60.60
IoU class person is 32.24
IoU class pottedplant is 23.88
IoU class sheep is 36.76
IoU class sofa is 26.85
IoU class train is 69.90
IoU class tvmonitor is 27.56

Model Zoo

Download the pretrained and linear finetuned models here.

Dataset Pixel Grouping Prior mIoU (LC) mIoU (K-means) Download link
PASCAL VOC Supervised Saliency - 44.2 Pretrained Model 🔗
PASCAL VOC Supervised Saliency 63.9 (65.5*) 44.2 Linear Finetuned 🔗
PASCAL VOC Unsupervised Saliency - 35.0 Pretrained Model 🔗
PASCAL VOC Unsupervised Saliency 58.4 (59.5*) 35.0 Linear Finetuned 🔗

* Denotes CRF post-processing.

To evaluate and visualize the predictions of the finetuned model, run the following command:

cd segmentation
python eval.py --config_env configs/env.yml --config_exp configs/VOCSegmentation_supervised_saliency_model.yml --state-dict $PATH_TO_MODEL

You can optionally append the --crf-postprocess flag.

Citation

This code is based on the SCAN and MoCo repositories. If you find this repository useful for your research, please consider citing the following paper(s):

@article{vangansbeke2020unsupervised,
  title={Unsupervised Semantic Segmentation by Contrasting Object Mask Proposals},
  author={Van Gansbeke, Wouter and Vandenhende, Simon and Georgoulis, Stamatios and Van Gool, Luc},
  journal={arxiv preprint arxiv:2102.06191},
  year={2021}
}
@inproceedings{vangansbeke2020scan,
  title={Scan: Learning to classify images without labels},
  author={Van Gansbeke, Wouter and Vandenhende, Simon and Georgoulis, Stamatios and Proesmans, Marc and Van Gool, Luc},
  booktitle={Proceedings of the European Conference on Computer Vision},
  year={2020}
}
@inproceedings{he2019moco,
  title={Momentum Contrast for Unsupervised Visual Representation Learning},
  author={Kaiming He and Haoqi Fan and Yuxin Wu and Saining Xie and Ross Girshick},
  booktitle = {Conference on Computer Vision and Pattern Recognition},
  year={2019}
}

For any enquiries, please contact the main authors.

For an overview on self-supervised learning, have a look at the overview repository.

License

This software is released under a creative commons license which allows for personal and research use only. For a commercial license please contact the authors. You can view a license summary here.

Acknoledgements

This work was supported by Toyota, and was carried out at the TRACE Lab at KU Leuven (Toyota Research on Automated Cars in Europe - Leuven).

Owner
Wouter Van Gansbeke
PhD researcher at KU Leuven. Especially interested in computer vision, machine learning and deep learning. Working on self-supervised and multi-task learning.
Wouter Van Gansbeke
Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
Spatial Temporal Graph Convolutional Networks (ST-GCN) for Skeleton-Based Action Recognition in PyTorch

Reminder ST-GCN has transferred to MMSkeleton, and keep on developing as an flexible open source toolbox for skeleton-based human understanding. You a

sijie yan 1.1k Dec 25, 2022
HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021)

Code for HDR Video Reconstruction HDR Video Reconstruction: A Coarse-to-fine Network and A Real-world Benchmark Dataset (ICCV 2021) Guanying Chen, Cha

Guanying Chen 64 Nov 19, 2022
Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Repository for scripts and notebooks from the book: Programming PyTorch for Deep Learning

Ian Pointer 368 Dec 17, 2022
Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization

Head2Toe: Utilizing Intermediate Representations for Better OOD Generalization Code for reproducing our results in the Head2Toe paper. Paper: arxiv.or

Google Research 62 Dec 12, 2022
Image-to-Image Translation with Conditional Adversarial Networks (Pix2pix) implementation in keras

pix2pix-keras Pix2pix implementation in keras. Original paper: Image-to-Image Translation with Conditional Adversarial Networks (pix2pix) Paper Author

William Falcon 141 Dec 30, 2022
[CVPR 2020] GAN Compression: Efficient Architectures for Interactive Conditional GANs

GAN Compression project | paper | videos | slides [NEW!] GAN Compression is accepted by T-PAMI! We released our T-PAMI version in the arXiv v4! [NEW!]

MIT HAN Lab 1k Jan 07, 2023
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
Learning Representations that Support Robust Transfer of Predictors

Transfer Risk Minimization (TRM) Code for Learning Representations that Support Robust Transfer of Predictors Prepare the Datasets Preprocess the Scen

Yilun Xu 15 Dec 07, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending"

Bridging the Visual Gap: Wide-Range Image Blending PyTorch implementaton of our CVPR 2021 paper "Bridging the Visual Gap: Wide-Range Image Blending".

Chia-Ni Lu 69 Dec 20, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
Demos of essentia classifiers hosted on replicate.ai

essentia-replicate-demos Demos of Essentia models hosted on replicate.ai's MTG site. The models Check our site for a complete list of the models avail

Music Technology Group - Universitat Pompeu Fabra 12 Nov 14, 2022
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation

Uncertainty Estimation via Response Scaling for Pseudo-mask Noise Mitigation in Weakly-supervised Semantic Segmentation Introduction This is a PyTorch

XMed-Lab 30 Sep 23, 2022