Neural style transfer in PyTorch.

Overview

style-transfer-pytorch

An implementation of neural style transfer (A Neural Algorithm of Artistic Style) in PyTorch, supporting CPUs and Nvidia GPUs. It does automatic multi-scale (coarse-to-fine) stylization to produce high-quality high resolution stylizations, even up to print resolution if the GPUs have sufficient memory. If two GPUs are available, they can both be used to increase the maximum resolution. (Using two GPUs is not faster than using one.)

The algorithm has been modified from that in the literature by:

  • Using the PyTorch pre-trained VGG-19 weights instead of the original VGG-19 weights

  • Changing the padding mode of the first layer of VGG-19 to 'replicate', to reduce edge artifacts

  • When using average or L2 pooling, scaling the result by an empirically derived factor to ensure that the magnitude of the result stays the same on average (Gatys et al. (2015) did not do this)

  • Using an approximation to the MSE loss such that its gradient L1 norm is approximately 1 for content and style losses (in order to approximate the effects of gradient normalization, which produces better visual quality)

  • Normalizing the Gram matrices by the number of elements in each feature map channel rather than by the total number of elements (Johnson et al.) or not normalizing (Gatys et al. (2015))

  • Taking an exponential moving average over the iterates to reduce iterate noise (each new scale is initialized with the previous scale's averaged iterate)

  • Warm-starting the Adam optimizer with scaled-up versions of its first and second moment buffers at the beginning of each new scale, to prevent noise from being added to the iterates at the beginning of each scale

  • Using non-equal weights for the style layers to improve visual quality

  • Stylizing the image at progressively larger scales, each greater by a factor of sqrt(2) (this is improved from the multi-scale scheme given in Gatys et al. (2016))

Example outputs (click for the full-sized version)

Installation

Python 3.6+ is required.

PyTorch is required: follow their installation instructions before proceeding. If you do not have an Nvidia GPU, select None for CUDA. On Linux, you can find out your CUDA version using the nvidia-smi command. PyTorch packages for CUDA versions lower than yours will work, but select the highest you can.

To install style-transfer-pytorch, first clone the repository, then run the command:

pip install -e PATH_TO_REPO

This will install the style_transfer CLI tool. style_transfer uses a pre-trained VGG-19 model (Simonyan et al.), which is 548MB in size, and will download it when first run.

If you have a supported GPU and style_transfer is using the CPU, try using the argument --device cuda:0 to force it to try to use the first CUDA GPU. This should print an informative error message.

Basic usage

style_transfer CONTENT_IMAGE STYLE_IMAGE [STYLE_IMAGE ...] [-o OUTPUT_IMAGE]

Input images will be converted to sRGB when loaded, and output images have the sRGB colorspace. If the output image is a TIFF file, it will be written with 16 bits per channel. Alpha channels in the inputs will be ignored.

style_transfer has many optional arguments: run it with the --help argument to see a full list. Particularly notable ones include:

  • --web enables a simple web interface while the program is running that allows you to watch its progress. It runs on port 8080 by default, but you can change it with --port. If you just want to view the current image and refresh it manually, you can go to /image.

  • --devices manually sets the PyTorch device names. It can be set to cpu to force it to run on the CPU on a machine with a supported GPU, or to e.g. cuda:1 (zero indexed) to select the second CUDA GPU. Two GPUs can be specified, for instance --devices cuda:0 cuda:1. style_transfer will automatically use the first visible CUDA GPU, falling back to the CPU, if it is omitted.

  • -s (--end-scale) sets the maximum image dimension (height and width) of the output. A large image (e.g. 2896x2172) can take around fifteen minutes to generate on an RTX 3090 and will require nearly all of its 24GB of memory. Since both memory usage and runtime increase linearly in the number of pixels (quadratically in the value of the --end-scale parameter), users with less GPU memory or who do not want to wait very long are encouraged to use smaller resolutions. The default is 512.

  • -sw (--style-weights) specifies factors for the weighted average of multiple styles if there is more than one style image specified. These factors are automatically normalized to sum to 1. If omitted, the styles will be blended equally.

  • -cw (--content-weight) sets the degree to which features from the content image are included in the output image. The default is 0.015.

  • -tw (--tv-weight) sets the strength of the smoothness prior. The default is 2.

References

  1. L. Gatys, A. Ecker, M. Bethge (2015), "A Neural Algorithm of Artistic Style"

  2. L. Gatys, A. Ecker, M. Bethge, A. Hertzmann, E. Shechtman (2016), "Controlling Perceptual Factors in Neural Style Transfer"

  3. J. Johnson, A. Alahi, L. Fei-Fei (2016), "Perceptual Losses for Real-Time Style Transfer and Super-Resolution"

  4. A. Mahendran, A. Vedaldi (2014), "Understanding Deep Image Representations by Inverting Them"

  5. D. Kingma, J. Ba (2014), "Adam: A Method for Stochastic Optimization"

  6. K. Simonyan, A. Zisserman (2014), "Very Deep Convolutional Networks for Large-Scale Image Recognition"

Owner
Katherine Crowson
Katherine Crowson
Pretrained models for Jax/Haiku; MobileNet, ResNet, VGG, Xception.

Pre-trained image classification models for Jax/Haiku Jax/Haiku Applications are deep learning models that are made available alongside pre-trained we

Alper Baris CELIK 14 Dec 20, 2022
Tutorial materials for Part of NSU Intro to Deep Learning with PyTorch.

Intro to Deep Learning Materials are part of North South University (NSU) Intro to Deep Learning with PyTorch workshop series. (Slides) Related materi

Hasib Zunair 9 Jun 08, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
DrWhy is the collection of tools for eXplainable AI (XAI). It's based on shared principles and simple grammar for exploration, explanation and visualisation of predictive models.

Responsible Machine Learning With Great Power Comes Great Responsibility. Voltaire (well, maybe) How to develop machine learning models in a responsib

Model Oriented 590 Dec 26, 2022
Code for: https://berkeleyautomation.github.io/bags/

DeformableRavens Code for the paper Learning to Rearrange Deformable Cables, Fabrics, and Bags with Goal-Conditioned Transporter Networks. Here is the

Daniel Seita 121 Dec 30, 2022
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
FaRL for Facial Representation Learning

FaRL for Facial Representation Learning This repo hosts official implementation of our paper General Facial Representation Learning in a Visual-Lingui

Microsoft 19 Jan 05, 2022
Official implementation of MSR-GCN (ICCV 2021 paper)

MSR-GCN Official implementation of MSR-GCN: Multi-Scale Residual Graph Convolution Networks for Human Motion Prediction (ICCV 2021 paper) [Paper] [Sup

LevonDang 42 Nov 07, 2022
Prototypical Networks for Few shot Learning in PyTorch

Prototypical Networks for Few shot Learning in PyTorch Simple alternative Implementation of Prototypical Networks for Few Shot Learning (paper, code)

Orobix 835 Jan 08, 2023
3DIAS: 3D Shape Reconstruction with Implicit Algebraic Surfaces (ICCV 2021)

3DIAS_Pytorch This repository contains the official code to reproduce the results from the paper: 3DIAS: 3D Shape Reconstruction with Implicit Algebra

Mohsen Yavartanoo 21 Dec 12, 2022
Bolt Online Learning Toolbox

Bolt Online Learning Toolbox Bolt features discriminative learning of linear predictors (e.g. SVM or Logistic Regression) using fast online learning a

Peter Prettenhofer 87 Dec 12, 2022
Self-Supervised Pre-Training for Transformer-Based Person Re-Identification

Self-Supervised Pre-Training for Transformer-Based Person Re-Identification [pdf] The official repository for Self-Supervised Pre-Training for Transfo

Hao Luo 116 Jan 04, 2023
StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion

StarGANv2-VC: A Diverse, Unsupervised, Non-parallel Framework for Natural-Sounding Voice Conversion Yinghao Aaron Li, Ali Zare, Nima Mesgarani We pres

Aaron (Yinghao) Li 282 Jan 01, 2023
My implementation of DeepMind's Perceiver

DeepMind Perceiver (in PyTorch) Disclaimer: This is not official and I'm not affiliated with DeepMind. My implementation of the Perceiver: General Per

Louis Arge 55 Dec 12, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
It is a simple library to speed up CLIP inference up to 3x (K80 GPU)

CLIP-ONNX It is a simple library to speed up CLIP inference up to 3x (K80 GPU) Usage Install clip-onnx module and requirements first. Use this trick !

Gerasimov Maxim 93 Dec 20, 2022
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising

Deep-Rep-MFIR Official implementation of Deep Reparametrization of Multi-Frame Super-Resolution and Denoising Publication: Deep Reparametrization of M

Goutam Bhat 39 Jan 04, 2023
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023