Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Related tags

Deep LearningDTA
Overview

Deconfounding Temporal Autoencoder (DTA)

This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies".

Python scripts

The following scripts are used to reproduce the results:

main.py (main script containing the implementation code)

sim_exp.py (reproducing the simulation experiments)

mimic_exp.py (reproducing the results with MIMIC-III)

The first two scripts are self contained. The last one uses the pre-processed MIMIC-III data set. The pre-processing pipeline is adopted from Wang et. al. (2020). See the references below.

Requirements

python 3.6 pytorch 1.7

Reproducing simulation results

Run the script sim_exp.py. The script contains synthetic data simulation and code that produces the results reported.

Reproducing MIMIC-III results

Run the script mimic_exp.py. The script requires the pre-processed MIMIC-III data as input (see references below).

MIMIC-III is a freely accessible database. However, access must be requested at https://physionet.org/content/mimiciii/1.4/. When MIMIC-III access is granted, the pre-processed data by Wang et. al. (2020) is accessible with instructions in the respective paper. We use this data set to study the effect of vasopressors and mechanical ventilation on two outcome variables: (diastolic) blood pressure and oxygen saturation.

We extract 2313 patients with 30 time steps each. We use the following covariates: heart rate, red blood cell count, sodium, mean blood pressure, systemic vascular resistence, glucose, chloride urine, glascow coma scale total, hematrocit, positive end-pressure set, respiratory rate, prothrombin time pt, cholesterol, hemoglobin, creatinine, blood urea nitrogen, bicarbonate, calcium ionized, partial pressure of carbon dioxide, magnesium, anion gap, phosphorous, venous pvo2, platelets, calcium urine.

References

Johnson, A. E., Pollard, T. J., Shen, L., Li-Wei, H. L., Feng, M., Ghassemi, M., ... & Mark, R. G. (2016). MIMIC-III, a freely accessible critical care database. Scientific data, 3(1), 1-9.

Wang, S., McDermott, M. B., Chauhan, G., Ghassemi, M., Hughes, M. C., & Naumann, T. (2020, April). MIMIC-extract: A data extraction, preprocessing, and representation pipeline for MIMIC-III. In Proceedings of the ACM Conference on Health, Inference, and Learning (pp. 222-235).

Owner
Milan Kuzmanovic
Milan Kuzmanovic
Repository of 3D Object Detection with Pointformer (CVPR2021)

3D Object Detection with Pointformer This repository contains the code for the paper 3D Object Detection with Pointformer (CVPR 2021) [arXiv]. This wo

Zhuofan Xia 117 Jan 06, 2023
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
Nvdiffrast - Modular Primitives for High-Performance Differentiable Rendering

Nvdiffrast – Modular Primitives for High-Performance Differentiable Rendering Modular Primitives for High-Performance Differentiable Rendering Samuli

NVIDIA Research Projects 675 Jan 06, 2023
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
dyld_shared_cache processing / Single-Image loading for BinaryNinja

Dyld Shared Cache Parser Author: cynder (kat) Dyld Shared Cache Support for BinaryNinja Without any of the fuss of requiring manually loading several

cynder 76 Dec 28, 2022
PyTorch implementation of DirectCLR from paper Understanding Dimensional Collapse in Contrastive Self-supervised Learning

DirectCLR DirectCLR is a simple contrastive learning model for visual representation learning. It does not require a trainable projector as SimCLR. It

Meta Research 49 Dec 21, 2022
Tooling for converting STAC metadata to ODC data model

手语识别 0、使用到的模型 (1). openpose,作者:CMU-Perceptual-Computing-Lab https://github.com/CMU-Perceptual-Computing-Lab/openpose (2). 图像分类classification,作者:Bubbl

Open Data Cube 65 Dec 20, 2022
Posterior temperature optimized Bayesian models for inverse problems in medical imaging

Posterior temperature optimized Bayesian models for inverse problems in medical imaging Max-Heinrich Laves*, Malte Tölle*, Alexander Schlaefer, Sandy

Artificial Intelligence in Cardiovascular Medicine (AICM) 6 Sep 19, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

基于Flask开发后端、VUE开发前端框架,在WEB端部署YOLOv5目标检测模型

37 Jan 01, 2023
TargetAllDomainObjects - A python wrapper to run a command on against all users/computers/DCs of a Windows Domain

TargetAllDomainObjects A python wrapper to run a command on against all users/co

Podalirius 19 Dec 13, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

41 Dec 14, 2022
Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection

Frequency Spectrum Augmentation Consistency for Domain Adaptive Object Detection Main requirements torch = 1.0 torchvision = 0.2.0 Python 3 Environm

15 Apr 04, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
Human motion synthesis using Unity3D

Human motion synthesis using Unity3D Prerequisite: Software: amc2bvh.exe, Unity 2017, Blender. Unity: RockVR (Video Capture), scenes, character models

Hao Xu 9 Jun 01, 2022
Really awesome semantic segmentation

really-awesome-semantic-segmentation A list of all papers on Semantic Segmentation and the datasets they use. This site is maintained by Holger Caesar

Holger Caesar 400 Nov 28, 2022
An end-to-end image translation model with weight-map for color constancy

CCUnet An end-to-end image translation model with weight-map for color constancy 1. Download the dataset (take Colorchecker_recommended dataset as an

Jianhui Qiu 1 Dec 21, 2021
Text Extraction Formulation + Feedback Loop for state-of-the-art WSD (EMNLP 2021)

ConSeC is a novel approach to Word Sense Disambiguation (WSD), accepted at EMNLP 2021. It frames WSD as a text extraction task and features a feedback loop strategy that allows the disambiguation of

Sapienza NLP group 36 Dec 13, 2022