Code for ACL'2021 paper WARP 🌀 Word-level Adversarial ReProgramming

Overview

🌀 WARP: Word-level Adversarial ReProgramming

This repository contains code for ACL'2021 Paper WARP: Word-level Adversarial ReProgramming.

WARP adds a few trainable embeddings around the input, which causes the masked language model to predict the sentiment of the sentence in the SST-2 task.

Transfer learning from pretrained language models recently became the dominant approach for solving many NLP tasks. A common approach to transfer learning for multiple tasks that maximize parameter sharing trains one or more task-specific layers on top of the language model.

In this paper, we present an alternative approach based on adversarial reprogramming, which extends earlier work on automatic prompt generation. Adversarial reprogramming attempts to learn task-specific word embeddings that, when concatenated to the input text, instruct the language model to solve the specified task.

Using up to 25K trainable parameters per task, this approach outperforms all existing methods that use up to 25M trainable parameters on the public leaderboard of the GLUE benchmark. Our method, initialized with task-specific human-readable prompts, also works in a few-shot setting, outperforming GPT-3 on two SuperGLUE tasks after training on just 32 samples.

Few-Shot Results

Set Model CB RTE
F1 Acc. Acc.
dev
GPT-3 Small 26.1 42.9 52.3
GPT-3 Med 40.4 58.9 48.4
GPT-3 57.2 82.1 72.9
PET (ALBERT) 59.4 85.1 69.8
iPET (ALBERT) 92.4 92.9 74.0
WARPinit (ALBERT) 84.0 87.5 71.8
test
GPT-3 52.0 75.6 69.0
PET (ALBERT) 60.2 87.2 67.2
iPET (ALBERT) 79.9 88.8 70.8
WARPinit (ALBERT) 70.2 82.4 69.1
Results on SuperGLUE benchmark. The results for the test set are obtained from SuperGLUE evaluation server. We only show systems performing in a similar few-shot training setup using 32 examples.

Setup

The code requires YerevaNN's internal version of allennlp

git clone https://github.com/YerevaNN/allennlp
git checkout warp
pip install .

Training

Linear Probing

for DATASET in 'cola' 'sst2' 'mrpc' 'qqp' 'stsb' 'mnli' 'rte' 'wnli' 'qnli'
do
    export HPARAMS='{
        "dataset": "'$DATASET'",
        "lr": 0.0001,
        "num_epochs": 20,
        "prompts": [],
        "reorder_optimized": false,
        "max_batch_size": 8,
        "max_tokens_sq": 262144, "on_logits":  false, "pooling_index":  null, "seed":  1}'
    python -m allennlp train \
    -s .aim/baseline-linear-${DATASET} configs/warp.jsonnet
done

WARP_0

"], "reorder_optimized": true, "max_batch_size": 8, "max_tokens_sq": 262144, "on_logits": "pre_decoder_layer_norm", "pooling_index": 1, "seed": 1 }' python -m allennlp train \ -s .aim/baseline-warp_0-${DATASET} configs/warp.jsonnet done ">
for DATASET in 'cola' 'sst2' 'mrpc' 'qqp' 'stsb' 'mnli' 'rte' 'wnli' 'qnli'
do
    export HPARAMS='{
        "dataset": "'$DATASET'",
        "lr": 0.0001,
        "num_epochs": 20,
        "prompts": [null, "
   
    "],
   
        "reorder_optimized": true,
        "max_batch_size": 8,
        "max_tokens_sq": 262144,
        "on_logits": "pre_decoder_layer_norm",
        "pooling_index": 1,
        "seed": 1
    }'
    python -m allennlp train \
    -s .aim/baseline-warp_0-${DATASET} configs/warp.jsonnet
done

Training WARP

", "prompts":[-10,-11,-12,-13,-14,null,-15,-16,-17,-18,-19," ",-20,-21,-22,-23,-24,null,-25,-26,-27,-28,-29], "seed":1, "transformer_model":"roberta-large" }' python -m allennlp train \ -s .aim/t-${DATASET} configs/warp.jsonnet ">
export DATASET="rte"
export HPARAMS='{
    "benchmark":"super_glue",
    "classifier_init":null,
    "dataset":"'$DATASET'",
    "ensure_whitespace_between":false,
    "lr":0.001,
    "max_batch_size":8,
    "max_tokens_sq":262144,
    "num_epochs":30,
    "prompt_better_init":"
    
     ",
    
    "prompts":[-10,-11,-12,-13,-14,null,-15,-16,-17,-18,-19,"
    
     ",-20,-21,-22,-23,-24,null,-25,-26,-27,-28,-29],
    
    "seed":1,
    "transformer_model":"roberta-large"
}'
python -m allennlp train \
-s .aim/t-${DATASET} configs/warp.jsonnet

WARP_init

Few-Shot Experiments

", [-20, ","], null, [-29, "!"],-30,-31], "seed":3, "str_cut_frac":0, "transformer_model":"albert-xxlarge-v2", "validation_metric": null }' python -m allennlp train \ -s .aim/t-${DATASET}-`date +%s` configs/warp.jsonnet ">
export HPARAMS='{
    "benchmark":"super_glue",
    "classifier_init": {
        "entailment": " yes",
        "not_entailment": " instead"
    },
    "dataset":"few_rte",
    "eval_mode":false,
    "lr":0.001,
    "max_batch_size":2,
    "max_tokens_sq":131072,
    "num_epochs":100,
    "num_gradient_accumulation_steps":2,
    "prompt_better_init": "[PAD]",
    "prompts":[-10,-11,[-14,"\""],null,[-15,"\""],  [-16, "?"], "
   
    ", [-20, ","], null, [-29, "!"],-30,-31],
   
    "seed":3,
    "str_cut_frac":0,
    "transformer_model":"albert-xxlarge-v2",
    "validation_metric": null
}'
python -m allennlp train \
-s .aim/t-${DATASET}-`date +%s` configs/warp.jsonnet
",[-20,","],null,[-29,"!"],-30,-31], "seed":1, "str_cut_frac":0.06, "transformer_model":"albert-xxlarge-v2", "validation_metric":"+training_val_metric" }' python -m allennlp train \ -s .aim/t-${DATASET}-`date +%s` configs/warp.jsonnet ">
export HPARAMS='{
   "benchmark":"super_glue",
   "classifier_init":{
      "entailment":" yes",
      "not_entailment":" instead"
   },
   "dataset":"few_rte",
   "grad_norm":1,
   "lr":0.001,
   "max_batch_size":2,
   "max_tokens_sq":131072,
   "num_epochs":30,
   "num_gradient_accumulation_steps":2,
   "prompt_better_init":"[PAD]",
   "prompts":[-10,-11,[-14,"\""],null,[-15,"\""],[-16,"?"],"
   
    ",[-20,","],null,[-29,"!"],-30,-31],
   
   "seed":1,
   "str_cut_frac":0.06,
   "transformer_model":"albert-xxlarge-v2",
   "validation_metric":"+training_val_metric"
}'
python -m allennlp train \
-s .aim/t-${DATASET}-`date +%s` configs/warp.jsonnet

Evaluation

python -m allennlp predict \
  --silent --use-dataset-reader --cuda-device 0 \
  --batch-size 50 \
  --predictor glue --output-file v0.1/AX.tsv /data/arp/.aim/H-93ae5ae9 ax/test
python -m allennlp predict \
  --silent --use-dataset-reader --cuda-device 0 \
  --batch-size 50 \
  --predictor glue --output-file v0.1/MNLI-m.tsv /data/arp/.aim/H-93ae5ae9 test_matched

Citation

If you want to refer to our work use this bibTeX:

@inproceedings{hambardzumyan-etal-2021-warp,
    title = "{WARP}: {W}ord-level {A}dversarial {R}e{P}rogramming",
    author = "Hambardzumyan, Karen  and
      Khachatrian, Hrant  and
      May, Jonathan",
    booktitle = "Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)",
    month = aug,
    year = "2021",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2021.acl-long.381",
    doi = "10.18653/v1/2021.acl-long.381",
    pages = "4921--4933"
}
Quick program made to generate alpha and delta tables for Hidden Markov Models

HMM_Calc Functions for generating Alpha and Delta tables from a Hidden Markov Model. Parameters: a: Matrix of transition probabilities. a[i][j] = a_{i

Adem Odza 1 Dec 04, 2021
Web service for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation based on OpenFace 2.0

OpenGaze: Web Service for OpenFace Facial Behaviour Analysis Toolkit Overview OpenFace is a fantastic tool intended for computer vision and machine le

Sayom Shakib 4 Nov 03, 2022
Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation

Tiny-NewsRec The source codes for our paper "Tiny-NewsRec: Efficient and Effective PLM-based News Recommendation". Requirements PyTorch == 1.6.0 Tensor

Yang Yu 3 Dec 07, 2022
Pomodoro timer that acknowledges the inexorable, infinite passage of time

Pomodouroboros Most pomodoro trackers assume you're going to start them. But time and tide wait for no one - the great pomodoro of the cosmos is cold

Glyph 66 Dec 13, 2022
Official PyTorch implementation and pretrained models of the paper Self-Supervised Classification Network

Self-Classifier: Self-Supervised Classification Network Official PyTorch implementation and pretrained models of the paper Self-Supervised Classificat

Elad Amrani 24 Dec 21, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
SelfAugment extends MoCo to include automatic unsupervised augmentation selection.

SelfAugment extends MoCo to include automatic unsupervised augmentation selection. In addition, we've included the ability to pretrain on several new datasets and included a wandb integration.

Colorado Reed 24 Oct 26, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
Seq2seq - Sequence to Sequence Learning with Keras

Seq2seq Sequence to Sequence Learning with Keras Hi! You have just found Seq2Seq. Seq2Seq is a sequence to sequence learning add-on for the python dee

Fariz Rahman 3.1k Dec 18, 2022
LiDAR R-CNN: An Efficient and Universal 3D Object Detector

LiDAR R-CNN: An Efficient and Universal 3D Object Detector Introduction This is the official code of LiDAR R-CNN: An Efficient and Universal 3D Object

TuSimple 295 Jan 05, 2023
How Effective is Incongruity? Implications for Code-mix Sarcasm Detection.

Code for the paper: How Effective is Incongruity? Implications for Code-mix Sarcasm Detection - ICON ACL 2021

2 Jun 05, 2022
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance

Multiview Neural Surface Reconstruction by Disentangling Geometry and Appearance Project Page | Paper | Data This repository contains an implementatio

Lior Yariv 521 Dec 30, 2022
Reference code for the paper CAMS: Color-Aware Multi-Style Transfer.

CAMS: Color-Aware Multi-Style Transfer Mahmoud Afifi1, Abdullah Abuolaim*1, Mostafa Hussien*2, Marcus A. Brubaker1, Michael S. Brown1 1York University

Mahmoud Afifi 36 Dec 04, 2022
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
Pytorch implementation of Learning with Opponent-Learning Awareness

Pytorch implementation of Learning with Opponent-Learning Awareness using DiCE

Alexis David Jacq 82 Sep 15, 2022
Container : Context Aggregation Network

Container : Context Aggregation Network If you use this code for a paper please cite: @article{gao2021container, title={Container: Context Aggregati

AI2 47 Dec 16, 2022