PyTorch implementation of the YOLO (You Only Look Once) v2

Overview

PyTorch implementation of the YOLO (You Only Look Once) v2

The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorch as the developing framework to increase productivity, and utilize ONNX to convert models into Caffe 2 to benefit engineering deployment. If you are benefited from this project, a donation will be appreciated (via PayPal, 微信支付 or 支付宝).

Designs

  • Flexible configuration design. Program settings are configurable and can be modified (via configure file overlaping (-c/--config option) or command editing (-m/--modify option)) using command line argument.

  • Monitoring via TensorBoard. Such as the loss values and the debugging images (such as IoU heatmap, ground truth and predict bounding boxes).

  • Parallel model training design. Different models are saved into different directories so that can be trained simultaneously.

  • Using a NoSQL database to store evaluation results with multiple dimension of information. This design is useful when analyzing a large amount of experiment results.

  • Time-based output design. Running information (such as the model, the summaries (produced by TensorBoard), and the evaluation results) are saved periodically via a predefined time.

  • Checkpoint management. Several latest checkpoint files (.pth) are preserved in the model directory and the older ones are deleted.

  • NaN debug. When a NaN loss is detected, the running environment (data batch) and the model will be exported to analyze the reason.

  • Unified data cache design. Various dataset are converted into a unified data cache via corresponding cache plugins. Some plugins are already implemented. Such as PASCAL VOC and MS COCO.

  • Arbitrarily replaceable model plugin design. The main deep neural network (DNN) can be easily replaced via configuration settings. Multiple models are already provided. Such as Darknet, ResNet, Inception v3 and v4, MobileNet and DenseNet.

  • Extendable data preprocess plugin design. The original images (in different sizes) and labels are processed via a sequence of operations to form a training batch (images with the same size, and bounding boxes list are padded). Multiple preprocess plugins are already implemented. Such as augmentation operators to process images and labels (such as random rotate and random flip) simultaneously, operators to resize both images and labels into a fixed size in a batch (such as random crop), and operators to augment images without labels (such as random blur, random saturation and random brightness).

Feautures

  • Reproduce the original paper's training results.
  • Multi-scale training.
  • Dimension cluster.
  • Darknet model file (.weights) parser.
  • Detection from image and camera.
  • Processing Video file.
  • Multi-GPU supporting.
  • Distributed training.
  • Focal loss.
  • Channel-wise model parameter analyzer.
  • Automatically change the number of channels.
  • Receptive field analyzer.

Quick Start

This project uses Python 3. To install the dependent libraries, type the following command in a terminal.

sudo pip3 install -r requirements.txt

quick_start.sh contains the examples to perform detection and evaluation. Run this script. Multiple datasets and models (the original Darknet's format, will be converted into PyTorch's format) will be downloaded (aria2 is required). These datasets are cached into different data profiles, and the models are evaluated over the cached data. The models are used to detect objects in an example image, and the detection results will be shown.

License

This project is released as the open source software with the GNU Lesser General Public License version 3 (LGPL v3).

Owner
申瑞珉 (Ruimin Shen)
申瑞珉 (Ruimin Shen)
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
LSTM model trained on a small dataset of 3000 names written in PyTorch

LSTM model trained on a small dataset of 3000 names. Model generates names from model by selecting one out of top 3 letters suggested by model at a time until an EOS (End Of Sentence) character is no

Sahil Lamba 1 Dec 20, 2021
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Reinfore learning tool box, contains trpo, a3c algorithm for continous action space

RL_toolbox all the algorithm is running on pycharm IDE, or the package loss error may exist. implemented algorithm: trpo a3c a3c:for continous action

yupei.wu 44 Oct 10, 2022
PyTorch implementation of paper "StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement" (ICCV 2021 Oral)

StarEnhancer StarEnhancer: Learning Real-Time and Style-Aware Image Enhancement (ICCV 2021 Oral) Abstract: Image enhancement is a subjective process w

IDKiro 133 Dec 28, 2022
A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Monte Carlo Simulation to the Paper A High-Level Fusion Scheme for Circular Quantities published at the 20th International Conference on Advanced Robotics

Sören Kohnert 0 Dec 06, 2021
WORD: Revisiting Organs Segmentation in the Whole Abdominal Region

WORD: Revisiting Organs Segmentation in the Whole Abdominal Region. This repository provides the codebase and dataset for our work WORD: Revisiting Or

Healthcare Intelligence Laboratory 71 Jan 07, 2023
Face and Pose detector that emits MQTT events when a face or human body is detected and not detected.

Face Detect MQTT Face or Pose detector that emits MQTT events when a face or human body is detected and not detected. I built this as an alternative t

Jacob Morris 38 Oct 21, 2022
PyTorch implementation of PSPNet segmentation network

pspnet-pytorch PyTorch implementation of PSPNet segmentation network Original paper Pyramid Scene Parsing Network Details This is a slightly different

Roman Trusov 532 Dec 29, 2022
Studying Python release adoptions by looking at PyPI downloads

Analysis of version adoptions on PyPI We get PyPI download statistics via Google's BigQuery using the pypinfo tool. Usage First you need to get an acc

Julien Palard 9 Nov 04, 2022
The 3rd place solution for competition

The 3rd place solution for competition "Lyft Motion Prediction for Autonomous Vehicles" at Kaggle Team behind this solution: Artsiom Sanakoyeu [Homepa

Artsiom 104 Nov 22, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
A basic neural network for image segmentation.

Unet_erythema_detection A basic neural network for image segmentation. 前期准备 1.在logs文件夹中下载h5权重文件,百度网盘链接在logs文件夹中 2.将所有原图 放置在“/dataset_1/JPEGImages/”文件夹

1 Jan 16, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Implementation of Memory-Efficient Neural Networks with Multi-Level Generation, ICCV 2021

Memory-Efficient Multi-Level In-Situ Generation (MLG) By Jiaqi Gu, Hanqing Zhu, Chenghao Feng, Mingjie Liu, Zixuan Jiang, Ray T. Chen and David Z. Pan

Jiaqi Gu 2 Jan 04, 2022
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or simply to separate onnx files to any size you want.

sne4onnx A very simple tool for situations where optimization with onnx-simplifier would exceed the Protocol Buffers upper file size limit of 2GB, or

Katsuya Hyodo 10 Aug 30, 2022
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
Process text, including tokenizing and representing sentences as vectors and Applying some concepts like RNN, LSTM and GRU to create a classifier can detect the language in which a sentence is written from among 17 languages.

Language Identifier What is this ? The goal of this project is to create a model that is able to predict a given sentence language through text proces

Hossam Asaad 9 Dec 15, 2022