PyTorch implementation of the YOLO (You Only Look Once) v2

Overview

PyTorch implementation of the YOLO (You Only Look Once) v2

The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorch as the developing framework to increase productivity, and utilize ONNX to convert models into Caffe 2 to benefit engineering deployment. If you are benefited from this project, a donation will be appreciated (via PayPal, 微信支付 or 支付宝).

Designs

  • Flexible configuration design. Program settings are configurable and can be modified (via configure file overlaping (-c/--config option) or command editing (-m/--modify option)) using command line argument.

  • Monitoring via TensorBoard. Such as the loss values and the debugging images (such as IoU heatmap, ground truth and predict bounding boxes).

  • Parallel model training design. Different models are saved into different directories so that can be trained simultaneously.

  • Using a NoSQL database to store evaluation results with multiple dimension of information. This design is useful when analyzing a large amount of experiment results.

  • Time-based output design. Running information (such as the model, the summaries (produced by TensorBoard), and the evaluation results) are saved periodically via a predefined time.

  • Checkpoint management. Several latest checkpoint files (.pth) are preserved in the model directory and the older ones are deleted.

  • NaN debug. When a NaN loss is detected, the running environment (data batch) and the model will be exported to analyze the reason.

  • Unified data cache design. Various dataset are converted into a unified data cache via corresponding cache plugins. Some plugins are already implemented. Such as PASCAL VOC and MS COCO.

  • Arbitrarily replaceable model plugin design. The main deep neural network (DNN) can be easily replaced via configuration settings. Multiple models are already provided. Such as Darknet, ResNet, Inception v3 and v4, MobileNet and DenseNet.

  • Extendable data preprocess plugin design. The original images (in different sizes) and labels are processed via a sequence of operations to form a training batch (images with the same size, and bounding boxes list are padded). Multiple preprocess plugins are already implemented. Such as augmentation operators to process images and labels (such as random rotate and random flip) simultaneously, operators to resize both images and labels into a fixed size in a batch (such as random crop), and operators to augment images without labels (such as random blur, random saturation and random brightness).

Feautures

  • Reproduce the original paper's training results.
  • Multi-scale training.
  • Dimension cluster.
  • Darknet model file (.weights) parser.
  • Detection from image and camera.
  • Processing Video file.
  • Multi-GPU supporting.
  • Distributed training.
  • Focal loss.
  • Channel-wise model parameter analyzer.
  • Automatically change the number of channels.
  • Receptive field analyzer.

Quick Start

This project uses Python 3. To install the dependent libraries, type the following command in a terminal.

sudo pip3 install -r requirements.txt

quick_start.sh contains the examples to perform detection and evaluation. Run this script. Multiple datasets and models (the original Darknet's format, will be converted into PyTorch's format) will be downloaded (aria2 is required). These datasets are cached into different data profiles, and the models are evaluated over the cached data. The models are used to detect objects in an example image, and the detection results will be shown.

License

This project is released as the open source software with the GNU Lesser General Public License version 3 (LGPL v3).

Owner
申瑞珉 (Ruimin Shen)
申瑞珉 (Ruimin Shen)
Code for Environment Dynamics Decomposition (ED2).

ED2 Code for Environment Dynamics Decomposition (ED2). Installation Follow the installation in MBPO and Dreamer. Usage First follow the SD2 method for

0 Aug 10, 2021
Implementation for our ICCV 2021 paper: Dual-Camera Super-Resolution with Aligned Attention Modules

DCSR: Dual Camera Super-Resolution Implementation for our ICCV 2021 oral paper: Dual-Camera Super-Resolution with Aligned Attention Modules paper | pr

Tengfei Wang 110 Dec 20, 2022
Code/data of the paper "Hand-Object Contact Prediction via Motion-Based Pseudo-Labeling and Guided Progressive Label Correction" (BMVC2021)

Hand-Object Contact Prediction (BMVC2021) This repository contains the code and data for the paper "Hand-Object Contact Prediction via Motion-Based Ps

Takuma Yagi 13 Nov 07, 2022
Learning to trade under the reinforcement learning framework

Trading Using Q-Learning In this project, I will present an adaptive learning model to trade a single stock under the reinforcement learning framework

Uirá Caiado 470 Nov 28, 2022
Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 short.

Session-aware BERT4Rec Official repository for "Exploiting Session Information in BERT-based Session-aware Sequential Recommendation", SIGIR 2022 shor

Jamie J. Seol 22 Dec 13, 2022
Code for the paper "Improving Vision-and-Language Navigation with Image-Text Pairs from the Web" (ECCV 2020)

Improving Vision-and-Language Navigation with Image-Text Pairs from the Web Arjun Majumdar, Ayush Shrivastava, Stefan Lee, Peter Anderson, Devi Parikh

Arjun Majumdar 44 Dec 14, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
Source code for TACL paper "KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation".

KEPLER: A Unified Model for Knowledge Embedding and Pre-trained Language Representation Source code for TACL 2021 paper KEPLER: A Unified Model for Kn

THU-KEG 138 Dec 22, 2022
Trying to understand alias-free-gan.

alias-free-gan-explanation Trying to understand alias-free-gan in my own way. [Chinese Version 中文版本] CC-BY-4.0 License. Tzu-Heng Lin motivation of thi

Tzu-Heng Lin 12 Mar 17, 2022
BBScan py3 - BBScan py3 With Python

BBScan_py3 This repository is forked from lijiejie/BBScan 1.5. I migrated the fo

baiyunfei 12 Dec 30, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
PyTorch Code for the paper "VSE++: Improving Visual-Semantic Embeddings with Hard Negatives"

Improving Visual-Semantic Embeddings with Hard Negatives Code for the image-caption retrieval methods from VSE++: Improving Visual-Semantic Embeddings

Fartash Faghri 441 Dec 05, 2022
LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT

LightHuBERT LightHuBERT: Lightweight and Configurable Speech Representation Learning with Once-for-All Hidden-Unit BERT | Github | Huggingface | SUPER

WangRui 46 Dec 29, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
Tello Drone Trajectory Tracking

With this library you can track the trajectory of your tello drone or swarm of drones in real time.

Kamran Asgarov 2 Oct 12, 2022
Mini Software that give reminder to drink water as per your weight.

Water Notification Desktop Python The Mini Software built in Python (tkinter) that will remind you to drink water on specific time span based on your

Om Jogani 5 Dec 16, 2022
Code for project: "Learning to Minimize Remainder in Supervised Learning".

Learning to Minimize Remainder in Supervised Learning Code for project: "Learning to Minimize Remainder in Supervised Learning". Requirements and Envi

Yan Luo 0 Jul 18, 2021
This is an example of a reproducible modelling project

An example of a reproducible modelling project What are we doing? This example was created for the 2021 fall lecture series of Stanford's Center for O

Armin Thomas 2 Oct 26, 2021
This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge.

Data-Science-Intern-Challenge This repository contains answers of the Shopify Summer 2022 Data Science Intern Challenge. Summer 2022 Data Science Inte

1 Jan 11, 2022