PyTorch implementation of the YOLO (You Only Look Once) v2

Overview

PyTorch implementation of the YOLO (You Only Look Once) v2

The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorch as the developing framework to increase productivity, and utilize ONNX to convert models into Caffe 2 to benefit engineering deployment. If you are benefited from this project, a donation will be appreciated (via PayPal, 微信支付 or 支付宝).

Designs

  • Flexible configuration design. Program settings are configurable and can be modified (via configure file overlaping (-c/--config option) or command editing (-m/--modify option)) using command line argument.

  • Monitoring via TensorBoard. Such as the loss values and the debugging images (such as IoU heatmap, ground truth and predict bounding boxes).

  • Parallel model training design. Different models are saved into different directories so that can be trained simultaneously.

  • Using a NoSQL database to store evaluation results with multiple dimension of information. This design is useful when analyzing a large amount of experiment results.

  • Time-based output design. Running information (such as the model, the summaries (produced by TensorBoard), and the evaluation results) are saved periodically via a predefined time.

  • Checkpoint management. Several latest checkpoint files (.pth) are preserved in the model directory and the older ones are deleted.

  • NaN debug. When a NaN loss is detected, the running environment (data batch) and the model will be exported to analyze the reason.

  • Unified data cache design. Various dataset are converted into a unified data cache via corresponding cache plugins. Some plugins are already implemented. Such as PASCAL VOC and MS COCO.

  • Arbitrarily replaceable model plugin design. The main deep neural network (DNN) can be easily replaced via configuration settings. Multiple models are already provided. Such as Darknet, ResNet, Inception v3 and v4, MobileNet and DenseNet.

  • Extendable data preprocess plugin design. The original images (in different sizes) and labels are processed via a sequence of operations to form a training batch (images with the same size, and bounding boxes list are padded). Multiple preprocess plugins are already implemented. Such as augmentation operators to process images and labels (such as random rotate and random flip) simultaneously, operators to resize both images and labels into a fixed size in a batch (such as random crop), and operators to augment images without labels (such as random blur, random saturation and random brightness).

Feautures

  • Reproduce the original paper's training results.
  • Multi-scale training.
  • Dimension cluster.
  • Darknet model file (.weights) parser.
  • Detection from image and camera.
  • Processing Video file.
  • Multi-GPU supporting.
  • Distributed training.
  • Focal loss.
  • Channel-wise model parameter analyzer.
  • Automatically change the number of channels.
  • Receptive field analyzer.

Quick Start

This project uses Python 3. To install the dependent libraries, type the following command in a terminal.

sudo pip3 install -r requirements.txt

quick_start.sh contains the examples to perform detection and evaluation. Run this script. Multiple datasets and models (the original Darknet's format, will be converted into PyTorch's format) will be downloaded (aria2 is required). These datasets are cached into different data profiles, and the models are evaluated over the cached data. The models are used to detect objects in an example image, and the detection results will be shown.

License

This project is released as the open source software with the GNU Lesser General Public License version 3 (LGPL v3).

Owner
申瑞珉 (Ruimin Shen)
申瑞珉 (Ruimin Shen)
Implementation of ConvMixer-Patches Are All You Need? in TensorFlow and Keras

Patches Are All You Need? - ConvMixer ConvMixer, an extremely simple model that is similar in spirit to the ViT and the even-more-basic MLP-Mixer in t

Sayan Nath 8 Oct 03, 2022
PyContinual (An Easy and Extendible Framework for Continual Learning)

PyContinual (An Easy and Extendible Framework for Continual Learning) Easy to Use You can sumply change the baseline, backbone and task, and then read

176 Jan 05, 2023
Official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right"

Surface Form Competition This is the official repo of the paper "Surface Form Competition: Why the Highest Probability Answer Isn't Always Right" We p

Peter West 46 Dec 23, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation

Multi-Target Adversarial Frameworks for Domain Adaptation in Semantic Segmentation Paper Multi-Target Adversarial Frameworks for Domain Adaptation in

Valeo.ai 20 Jun 21, 2022
Learning Confidence for Out-of-Distribution Detection in Neural Networks

Learning Confidence Estimates for Neural Networks This repository contains the code for the paper Learning Confidence for Out-of-Distribution Detectio

235 Jan 05, 2023
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023
Repo for "Physion: Evaluating Physical Prediction from Vision in Humans and Machines" submission to NeurIPS 2021 (Datasets & Benchmarks track)

Physion: Evaluating Physical Prediction from Vision in Humans and Machines This repo contains code and data to reproduce the results in our paper, Phy

Cognitive Tools Lab 38 Jan 06, 2023
VQMIVC - Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion

VQMIVC: Vector Quantization and Mutual Information-Based Unsupervised Speech Representation Disentanglement for One-shot Voice Conversion (Interspeech

Disong Wang 262 Dec 31, 2022
[ICME 2021 Oral] CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning

CORE-Text: Improving Scene Text Detection with Contrastive Relational Reasoning This repository is the official PyTorch implementation of CORE-Text, a

Jingyang Lin 18 Aug 11, 2022
Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL BASALT Challenge.

KAIROS MineRL BASALT Codebase for the solution that won first place and was awarded the most human-like agent in the 2021 NeurIPS Competition MineRL B

Vinicius G. Goecks 37 Oct 30, 2022
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
Tensorflow implementation of Semi-supervised Sequence Learning (https://arxiv.org/abs/1511.01432)

Transfer Learning for Text Classification with Tensorflow Tensorflow implementation of Semi-supervised Sequence Learning(https://arxiv.org/abs/1511.01

DONGJUN LEE 82 Oct 22, 2022
RIFE: Real-Time Intermediate Flow Estimation for Video Frame Interpolation

RIFE - Real Time Video Interpolation arXiv | YouTube | Colab | Tutorial | Demo Table of Contents Introduction Collection Usage Evaluation Training and

hzwer 3k Jan 04, 2023
Py-faster-rcnn - Faster R-CNN (Python implementation)

py-faster-rcnn has been deprecated. Please see Detectron, which includes an implementation of Mask R-CNN. Disclaimer The official Faster R-CNN code (w

Ross Girshick 7.8k Jan 03, 2023
Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech"

GradTTS Unofficial Pytorch implementation of "Grad-TTS: A Diffusion Probabilistic Model for Text-to-Speech" (arxiv) About this repo This is an unoffic

HeyangXue1997 103 Dec 23, 2022
Image morphing without reference points by applying warp maps and optimizing over them.

Differentiable Morphing Image morphing without reference points by applying warp maps and optimizing over them. Differentiable Morphing is machine lea

Alex K 380 Dec 19, 2022
PoseCamera is python based SDK for human pose estimation through RGB webcam.

PoseCamera PoseCamera is python based SDK for human pose estimation through RGB webcam. Install install posecamera package through pip pip install pos

WonderTree 7 Jul 20, 2021
Ankou: Guiding Grey-box Fuzzing towards Combinatorial Difference

Ankou Ankou is a source-based grey-box fuzzer. It intends to use a more rich fitness function by going beyond simple branch coverage and considering t

SoftSec Lab 54 Dec 24, 2022
Simply enable or disable your Nvidia dGPU

EnvyControl (WIP) Simply enable or disable your Nvidia dGPU Usage First clone this repo and install envycontrol with sudo pip install . CLI Turn off y

Victor Bayas 292 Jan 03, 2023