PyTorch implementation of the YOLO (You Only Look Once) v2

Overview

PyTorch implementation of the YOLO (You Only Look Once) v2

The YOLOv2 is one of the most popular one-stage object detector. This project adopts PyTorch as the developing framework to increase productivity, and utilize ONNX to convert models into Caffe 2 to benefit engineering deployment. If you are benefited from this project, a donation will be appreciated (via PayPal, 微信支付 or 支付宝).

Designs

  • Flexible configuration design. Program settings are configurable and can be modified (via configure file overlaping (-c/--config option) or command editing (-m/--modify option)) using command line argument.

  • Monitoring via TensorBoard. Such as the loss values and the debugging images (such as IoU heatmap, ground truth and predict bounding boxes).

  • Parallel model training design. Different models are saved into different directories so that can be trained simultaneously.

  • Using a NoSQL database to store evaluation results with multiple dimension of information. This design is useful when analyzing a large amount of experiment results.

  • Time-based output design. Running information (such as the model, the summaries (produced by TensorBoard), and the evaluation results) are saved periodically via a predefined time.

  • Checkpoint management. Several latest checkpoint files (.pth) are preserved in the model directory and the older ones are deleted.

  • NaN debug. When a NaN loss is detected, the running environment (data batch) and the model will be exported to analyze the reason.

  • Unified data cache design. Various dataset are converted into a unified data cache via corresponding cache plugins. Some plugins are already implemented. Such as PASCAL VOC and MS COCO.

  • Arbitrarily replaceable model plugin design. The main deep neural network (DNN) can be easily replaced via configuration settings. Multiple models are already provided. Such as Darknet, ResNet, Inception v3 and v4, MobileNet and DenseNet.

  • Extendable data preprocess plugin design. The original images (in different sizes) and labels are processed via a sequence of operations to form a training batch (images with the same size, and bounding boxes list are padded). Multiple preprocess plugins are already implemented. Such as augmentation operators to process images and labels (such as random rotate and random flip) simultaneously, operators to resize both images and labels into a fixed size in a batch (such as random crop), and operators to augment images without labels (such as random blur, random saturation and random brightness).

Feautures

  • Reproduce the original paper's training results.
  • Multi-scale training.
  • Dimension cluster.
  • Darknet model file (.weights) parser.
  • Detection from image and camera.
  • Processing Video file.
  • Multi-GPU supporting.
  • Distributed training.
  • Focal loss.
  • Channel-wise model parameter analyzer.
  • Automatically change the number of channels.
  • Receptive field analyzer.

Quick Start

This project uses Python 3. To install the dependent libraries, type the following command in a terminal.

sudo pip3 install -r requirements.txt

quick_start.sh contains the examples to perform detection and evaluation. Run this script. Multiple datasets and models (the original Darknet's format, will be converted into PyTorch's format) will be downloaded (aria2 is required). These datasets are cached into different data profiles, and the models are evaluated over the cached data. The models are used to detect objects in an example image, and the detection results will be shown.

License

This project is released as the open source software with the GNU Lesser General Public License version 3 (LGPL v3).

Owner
申瑞珉 (Ruimin Shen)
申瑞珉 (Ruimin Shen)
Gated-Shape CNN for Semantic Segmentation (ICCV 2019)

GSCNN This is the official code for: Gated-SCNN: Gated Shape CNNs for Semantic Segmentation Towaki Takikawa, David Acuna, Varun Jampani, Sanja Fidler

859 Dec 26, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
Official implementation of SIGIR'2021 paper: "Sequential Recommendation with Graph Neural Networks".

SURGE: Sequential Recommendation with Graph Neural Networks This is our TensorFlow implementation for the paper: Sequential Recommendation with Graph

FIB LAB, Tsinghua University 53 Dec 26, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision. ICCV 2021.

Towers of Babel: Combining Images, Language, and 3D Geometry for Learning Multimodal Vision Download links and PyTorch implementation of "Towers of Ba

Blakey Wu 40 Dec 14, 2022
Code for KHGT model, AAAI2021

KHGT Code for KHGT accepted by AAAI2021 Please unzip the data files in Datasets/ first. To run KHGT on Yelp data, use python labcode_yelp.py For Movi

32 Nov 29, 2022
Attentive Implicit Representation Networks (AIR-Nets)

Attentive Implicit Representation Networks (AIR-Nets) Preprint | Supplementary | Accepted at the International Conference on 3D Vision (3DV) teaser.mo

29 Dec 07, 2022
Educational 2D SLAM implementation based on ICP and Pose Graph

slam-playground Educational 2D SLAM implementation based on ICP and Pose Graph How to use: Use keyboard arrow keys to navigate robot. Press 'r' to vie

Kirill 19 Dec 17, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
Lolviz - A simple Python data-structure visualization tool for lists of lists, lists, dictionaries; primarily for use in Jupyter notebooks / presentations

lolviz By Terence Parr. See Explained.ai for more stuff. A very nice looking javascript lolviz port with improvements by Adnan M.Sagar. A simple Pytho

Terence Parr 785 Dec 30, 2022
fklearn: Functional Machine Learning

fklearn: Functional Machine Learning fklearn uses functional programming principles to make it easier to solve real problems with Machine Learning. Th

nubank 1.4k Dec 07, 2022
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
基于DouZero定制AI实战欢乐斗地主

DouZero_For_Happy_DouDiZhu: 将DouZero用于欢乐斗地主实战 本项目基于DouZero 环境配置请移步项目DouZero 模型默认为WP,更换模型请修改start.py中的模型路径 运行main.py即可 SL (baselines/sl/): 基于人类数据进行深度学习

1.5k Jan 08, 2023
Project repo for Learning Category-Specific Mesh Reconstruction from Image Collections

Learning Category-Specific Mesh Reconstruction from Image Collections Angjoo Kanazawa*, Shubham Tulsiani*, Alexei A. Efros, Jitendra Malik University

438 Dec 22, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch.

snn-localization repo PyTorch implementation of Spiking Neural Networks trained on surrogate gradient & BPTT using snntorch. Install Dependencies Orig

Sami BARCHID 1 Jan 06, 2022
Online-compatible Unsupervised Non-resonant Anomaly Detection Repository

Online-compatible Unsupervised Non-resonant Anomaly Detection Repository Repository containing all scripts used in the studies of Online-compatible Un

0 Nov 09, 2021
moving object detection for satellite videos.

DSFNet: Dynamic and Static Fusion Network for Moving Object Detection in Satellite Videos Algorithm Introduction DSFNet: Dynamic and Static Fusion Net

xiaochao 39 Dec 16, 2022