Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Overview

Lux AI 2021 python game engine and gym

This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforcement Learning gym environment to be used to train RL agents for creating agents.

Features LuxAi2021
Lux game engine porting to python ✔️
Documentation
All actions supported ✔️
PPO example training agent ✔️
Example agent converges to a good policy ✔️
Kaggle submission format agents ✔️
Lux replay viewer support ✔️
Game engine consistency validation to base game ✔️

Installation

This should work cross-platform, but I've only tested Windows 10 and Ubuntu.

Important: Use Python 3.7.* for training your models. This is required since when you create a Kaggle submission, the Kaggle competition will run the code using Python 3.7.*, and you will get a model deserialization error if you train the model with Python 3.8>=.

Install luxai2021 environment package by running the installer:

python setup.py install

You will need Node.js version 12 or above: here

Python game interface

To directly use the ported game engine without the RL gym wrapper, here a couple example usages:

from luxai2021.game.game import Game
from luxai2021.game.actions import *
from luxai2021.game.constants import LuxMatchConfigs_Default


if __name__ == "__main__":
    # Create a game
    configs = LuxMatchConfigs_Default
    game = Game(configs)
    
    game_over = False
    while not game_over:
        print("Turn %i" % game.state["turn"])

        # Array of actions for both teams. Eg: MoveAction(team, unit_id, direction)
        actions = [] 

        game_over = game.run_turn_with_actions(actions)
    
    print("Game done, final map:")
    print(game.map.get_map_string())

Python gym environment interface for RL

A gym interface and match controller was created that supports creating custom agents, and a framework to submit them in kaggle submissions. Keep in mind that this framework is built around one action per unit + city_tile that can act each turn. Creating a basic gym interface looks like the following, however you should look at the more complete example in the examples subfolder:

import random
from stable_baselines3 import PPO  # pip install stable-baselines3
from luxai2021.env.lux_env import LuxEnvironment, SaveReplayAndModelCallback
from luxai2021.env.agent import Agent, AgentWithModel
from luxai2021.game.game import Game
from luxai2021.game.actions import *
from luxai2021.game.constants import LuxMatchConfigs_Default
from functools import partial  # pip install functools
import numpy as np
from gym import spaces
import time
import sys

class MyCustomAgent(AgentWithModel):
    def __init__(self, mode="train", model=None) -> None:
        """
        Implements an agent opponent
        """
        super().__init__(mode, model)
        
        # Define action and observation space
        # They must be gym.spaces objects
        # Example when using discrete actions:
        self.actions_units = [
            partial(MoveAction, direction=Constants.DIRECTIONS.CENTER),  # This is the do-nothing action
            partial(MoveAction, direction=Constants.DIRECTIONS.NORTH),
            partial(MoveAction, direction=Constants.DIRECTIONS.WEST),
            partial(MoveAction, direction=Constants.DIRECTIONS.SOUTH),
            partial(MoveAction, direction=Constants.DIRECTIONS.EAST),
            SpawnCityAction,
        ]
        self.actions_cities = [
            SpawnWorkerAction,
            SpawnCartAction,
            ResearchAction,
        ]
        self.action_space = spaces.Discrete(max(len(self.actions_units), len(self.actions_cities)))
        self.observation_space = spaces.Box(low=0, high=1, shape=(10,1), dtype=np.float16)

    def game_start(self, game):
        """
        This function is called at the start of each game. Use this to
        reset and initialize per game. Note that self.team may have
        been changed since last game. The game map has been created
        and starting units placed.

        Args:
            game ([type]): Game.
        """
        pass

    def turn_heurstics(self, game, is_first_turn):
        """
        This is called pre-observation actions to allow for hardcoded heuristics
        to control a subset of units. Any unit or city that gets an action from this
        callback, will not create an observation+action.

        Args:
            game ([type]): Game in progress
            is_first_turn (bool): True if it's the first turn of a game.
        """
        return
    
    def get_observation(self, game, unit, city_tile, team, is_new_turn):
        """
        Implements getting a observation from the current game for this unit or city
        """
        return np.zeros((10,1))
    
    def action_code_to_action(self, action_code, game, unit=None, city_tile=None, team=None):
        """
        Takes an action in the environment according to actionCode:
            action_code: Index of action to take into the action array.
        Returns: An action.
        """
        # Map action_code index into to a constructed Action object
        try:
            x = None
            y = None
            if city_tile is not None:
                x = city_tile.pos.x
                y = city_tile.pos.y
            elif unit is not None:
                x = unit.pos.x
                y = unit.pos.y
            
            if city_tile != None:
                action =  self.actions_cities[action_code%len(self.actions_cities)](
                    game=game,
                    unit_id=unit.id if unit else None,
                    unit=unit,
                    city_id=city_tile.city_id if city_tile else None,
                    citytile=city_tile,
                    team=team,
                    x=x,
                    y=y
                )
            else:
                action =  self.actions_units[action_code%len(self.actions_units)](
                    game=game,
                    unit_id=unit.id if unit else None,
                    unit=unit,
                    city_id=city_tile.city_id if city_tile else None,
                    citytile=city_tile,
                    team=team,
                    x=x,
                    y=y
                )
            
            return action
        except Exception as e:
            # Not a valid action
            print(e)
            return None
    
    def take_action(self, action_code, game, unit=None, city_tile=None, team=None):
        """
        Takes an action in the environment according to actionCode:
            actionCode: Index of action to take into the action array.
        """
        action = self.action_code_to_action(action_code, game, unit, city_tile, team)
        self.match_controller.take_action(action)
    
    def game_start(self, game):
        """
        This function is called at the start of each game. Use this to
        reset and initialize per game. Note that self.team may have
        been changed since last game. The game map has been created
        and starting units placed.

        Args:
            game ([type]): Game.
        """
        pass
    
    def get_reward(self, game, is_game_finished, is_new_turn, is_game_error):
        """
        Returns the reward function for this step of the game. Reward should be a
        delta increment to the reward, not the total current reward.
        """
        if is_game_finished:
            if game.get_winning_team() == self.team:
                return 1 # Win!
            else:
                return -1 # Loss

        return 0
    

if __name__ == "__main__":
    # Create the two agents that will play eachother
    
    # Create a default opponent agent that does nothing
    opponent = Agent()
    
    # Create a RL agent in training mode
    player = MyCustomAgent(mode="train")
    
    # Create a game environment
    configs = LuxMatchConfigs_Default
    env = LuxEnvironment(configs=configs,
                     learning_agent=player,
                     opponent_agent=opponent)
    
    # Play 5 games
    env.reset()
    obs = env.reset()
    game_count = 0
    while game_count < 5:
        # Take a random action
        action_code = random.sample(range(player.action_space.n), 1)[0]
        (obs, reward, is_game_over, state) = env.step( action_code )
        
        if is_game_over:
            print(f"Game done turn {env.game.state['turn']}, final map:")
            print(env.game.map.get_map_string())
            obs = env.reset()
            game_count += 1
    
    # Attach a ML model from stable_baselines3 and train a RL model
    model = PPO("MlpPolicy",
                    env,
                    verbose=1,
                    tensorboard_log="./lux_tensorboard/",
                    learning_rate=0.001,
                    gamma=0.998,
                    gae_lambda=0.95,
                    batch_size=2048,
                    n_steps=2048
                )
    
    print("Training model for 100K steps...")
    model.learn(total_timesteps=10000000)
    model.save(path='model.zip')

    # Inference the agent for 5 games
    game_count = 0
    obs = env.reset()
    while game_count < 5:
        action_code, _states = model.predict(obs, deterministic=False)
        (obs, reward, is_game_over, state) = env.step( action_code )
        
        if is_game_over:
            print(f"Game done turn {env.game.state['turn']}, final map:")
            print(env.game.map.get_map_string())
            obs = env.reset()
            game_count += 1



Example python ML training

Create your own agent logic, observations, actions, and rewards by modifying this example:

https://github.com/glmcdona/LuxPythonEnvGym/blob/main/examples/agent_policy.py

Then train your model by:

python ./examples/train.py

You can then run tensorboard to monitor the training:

tensorboard --logdir lux_tensorboard

Example kaggle notebook

Here is a complete training, inference, and kaggle submission example in Notebook format:

https://www.kaggle.com/glmcdona/lux-ai-deep-reinforcement-learning-ppo-example

Preparing a kaggle submission

You have trained a model, and now you'd like to submit it as a kaggle submission. Here are the steps to prepare your submission.

Either view the above kaggle example or prepare a submission yourself:

  1. Place your trained model file as model.zip and your agent file agent_policy.py in the ./kaggle_submissions/ folder.
  2. Run python download_dependencies.py in ./kaggle_submissions/ to copy two required python package dependencies into this folder (luxai2021 and stable_baselines3).
  3. Tarball the folder into a submission tar -czf submission.tar.gz -C kaggle_submissions .

Important: The model.zip needs to have been trained on Python 3.7.* or you get a deserialization error, since this is the python version that Kaggle Environment uses to inference the model in submission.

Creating and viewing a replay

If you are using the example train.py to train your model, replays will be generated and saved along with a copy of the model every 100K steps. By default 5 replay matches will be saved with each model checkpoint into .\\models\\model(runid)_(step_count)_(rand).json to monitor your bot's behaviour. You can view the replay here: https://2021vis.lux-ai.org/

Alternatively to manually generate a replay from a model, you can place your trained model file as model.zip and your agent file agent_policy.py in the ./kaggle_submissions/ folder. Then run a command like the following from that directory:

lux-ai-2021 ./kaggle_submissions/main_lux-ai-2021.py ./kaggle_submissions/main_lux-ai-2021.py --maxtime 100000

This will battle your agent against itself and produce a replay match. This requires the official lux-ai-2021 to be installed, see instructions here: https://github.com/Lux-AI-Challenge/Lux-Design-2021

Owner
Geoff McDonald
@glmcdona
Geoff McDonald
Code for EMNLP2021 paper "Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training"

VoCapXLM Code for EMNLP2021 paper Allocating Large Vocabulary Capacity for Cross-lingual Language Model Pre-training Environment DockerFile: dancingso

Bo Zheng 15 Jul 28, 2022
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
A Python Automated Machine Learning tool that optimizes machine learning pipelines using genetic programming.

Master status: Development status: Package information: TPOT stands for Tree-based Pipeline Optimization Tool. Consider TPOT your Data Science Assista

Epistasis Lab at UPenn 8.9k Dec 30, 2022
DeepStochlog Package For Python

DeepStochLog Installation Installing SWI Prolog DeepStochLog requires SWI Prolog to run. Run the following commands to install: sudo apt-add-repositor

KU Leuven Machine Learning Research Group 17 Dec 23, 2022
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
A simple program for training and testing vit

Vit This is a simple program for training and testing vit. Key requirements: torch, torchvision and timm. Dataset I put 5 categories of the cub classi

xiezhenyu 2 Oct 11, 2022
Pixel-level Crack Detection From Images Of Levee Systems : A Comparative Study

PIXEL-LEVEL CRACK DETECTION FROM IMAGES OF LEVEE SYSTEMS : A COMPARATIVE STUDY G

Manisha Panta 2 Jul 23, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

CompilerGym is a library of easy to use and performant reinforcement learning environments for compiler tasks

Facebook Research 721 Jan 03, 2023
Toolbox of models, callbacks, and datasets for AI/ML researchers.

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch Website • Installation • Main

Pytorch Lightning 1.4k Dec 30, 2022
This repository contains code from the paper "TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network"

TTS-GAN: A Transformer-based Time-Series Generative Adversarial Network This repository contains code from the paper "TTS-GAN: A Transformer-based Tim

Intelligent Multimodal Computing and Sensing Laboratory (IMICS Lab) - Texas State University 108 Dec 29, 2022
Finding Donors for CharityML

Finding-Donors-for-CharityML - Investigated factors that affect the likelihood of charity donations being made based on real census data.

Moamen Abdelkawy 1 Dec 30, 2021
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Spatial Transformer Nets in TensorFlow/ TensorLayer

MOVED TO HERE Spatial Transformer Networks Spatial Transformer Networks (STN) is a dynamic mechanism that produces transformations of input images (or

Hao 36 Nov 23, 2022
Flybirds - BDD-driven natural language automated testing framework, present by Trip Flight

Flybird | English Version 行为驱动开发(Behavior-driven development,缩写BDD),是一种软件过程的思想或者

Ctrip, Inc. 706 Dec 30, 2022
GrabGpu_py: a scripts for grab gpu when gpu is free

GrabGpu_py a scripts for grab gpu when gpu is free. WaitCondition: gpu_memory

tianyuluan 3 Jun 18, 2022
Generative Adversarial Networks(GANs)

Generative Adversarial Networks(GANs) Vanilla GAN ClusterGAN Vanilla GAN Model Structure Final Generator Structure A MLP with 2 hidden layers of hidde

Zhenbang Feng 2 Nov 05, 2021
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies.

Deformable Neural Radiance Fields This is the code for Deformable Neural Radiance Fields, a.k.a. Nerfies. Project Page Paper Video This codebase conta

Google 1k Jan 09, 2023
GDR-Net: Geometry-Guided Direct Regression Network for Monocular 6D Object Pose Estimation. (CVPR 2021)

GDR-Net This repo provides the PyTorch implementation of the work: Gu Wang, Fabian Manhardt, Federico Tombari, Xiangyang Ji. GDR-Net: Geometry-Guided

169 Jan 07, 2023