PyTorch implementation of UNet++ (Nested U-Net).

Overview

PyTorch implementation of UNet++ (Nested U-Net)

MIT License

This repository contains code for a image segmentation model based on UNet++: A Nested U-Net Architecture for Medical Image Segmentation implemented in PyTorch.

[NEW] Add support for multi-class segmentation dataset.

[NEW] Add support for PyTorch 1.x.

Requirements

  • PyTorch 1.x or 0.41

Installation

  1. Create an anaconda environment.
conda create -n=<env_name> python=3.6 anaconda
conda activate <env_name>
  1. Install PyTorch.
conda install pytorch torchvision cudatoolkit=10.1 -c pytorch
  1. Install pip packages.
pip install -r requirements.txt

Training on 2018 Data Science Bowl dataset

  1. Download dataset from here to inputs/ and unzip. The file structure is the following:
inputs
└── data-science-bowl-2018
    ├── stage1_train
    |   ├── 00ae65...
    │   │   ├── images
    │   │   │   └── 00ae65...
    │   │   └── masks
    │   │       └── 00ae65...            
    │   ├── ...
    |
    ...
  1. Preprocess.
python preprocess_dsb2018.py
  1. Train the model.
python train.py --dataset dsb2018_96 --arch NestedUNet
  1. Evaluate.
python val.py --name dsb2018_96_NestedUNet_woDS

(Optional) Using LovaszHingeLoss

  1. Clone LovaszSoftmax from bermanmaxim/LovaszSoftmax.
git clone https://github.com/bermanmaxim/LovaszSoftmax.git
  1. Train the model with LovaszHingeLoss.
python train.py --dataset dsb2018_96 --arch NestedUNet --loss LovaszHingeLoss

Training on original dataset

Make sure to put the files as the following structure (e.g. the number of classes is 2):

inputs
└── <dataset name>
    ├── images
    |   ├── 0a7e06.jpg
    │   ├── 0aab0a.jpg
    │   ├── 0b1761.jpg
    │   ├── ...
    |
    └── masks
        ├── 0
        |   ├── 0a7e06.png
        |   ├── 0aab0a.png
        |   ├── 0b1761.png
        |   ├── ...
        |
        └── 1
            ├── 0a7e06.png
            ├── 0aab0a.png
            ├── 0b1761.png
            ├── ...
  1. Train the model.
python train.py --dataset <dataset name> --arch NestedUNet --img_ext .jpg --mask_ext .png
  1. Evaluate.
python val.py --name <dataset name>_NestedUNet_woDS

Results

DSB2018 (96x96)

Here is the results on DSB2018 dataset (96x96) with LovaszHingeLoss.

Model IoU Loss
U-Net 0.839 0.365
Nested U-Net 0.842 0.354
Nested U-Net w/ Deepsupervision 0.843 0.362
Owner
4ui_iurz1
4ui_iurz1
Generates all variables from your .tf files into a variables.tf file.

tfvg Generates all variables from your .tf files into a variables.tf file. It searches for every var.variable_name in your .tf files and generates a v

1 Dec 01, 2022
PyTorch3D is FAIR's library of reusable components for deep learning with 3D data

Introduction PyTorch3D provides efficient, reusable components for 3D Computer Vision research with PyTorch. Key features include: Data structure for

Facebook Research 6.8k Jan 01, 2023
DIR-GNN - Discovering Invariant Rationales for Graph Neural Networks

DIR-GNN "Discovering Invariant Rationales for Graph Neural Networks" (ICLR 2022)

Ying-Xin (Shirley) Wu 70 Nov 13, 2022
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
A deep learning model for style-specific music generation.

DeepJ: A model for style-specific music generation https://arxiv.org/abs/1801.00887 Abstract Recent advances in deep neural networks have enabled algo

Henry Mao 704 Nov 23, 2022
A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows"

OutliersSlidingWindows A Java implementation of the experiments for the paper "k-Center Clustering with Outliers in Sliding Windows" Dataset generatio

PaoloPellizzoni 0 Jan 05, 2022
Grow Function: Generate 3D Stacked Bifurcating Double Deep Cellular Automata based organisms which differentiate using a Genetic Algorithm...

Grow Function: A 3D Stacked Bifurcating Double Deep Cellular Automata which differentiates using a Genetic Algorithm... TLDR;High Def Trees that you can mint as NFTs on Solana

Nathaniel Gibson 4 Oct 08, 2022
Binary Stochastic Neurons in PyTorch

Binary Stochastic Neurons in PyTorch http://r2rt.com/binary-stochastic-neurons-in-tensorflow.html https://github.com/pytorch/examples/tree/master/mnis

Onur Kaplan 54 Nov 21, 2022
code for paper "Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning" by Zhongzheng Ren*, Raymond A. Yeh*, Alexander G. Schwing.

Not All Unlabeled Data are Equal: Learning to Weight Data in Semi-supervised Learning Overview This code is for paper: Not All Unlabeled Data are Equa

Jason Ren 22 Nov 23, 2022
"3D Human Texture Estimation from a Single Image with Transformers", ICCV 2021

Texformer: 3D Human Texture Estimation from a Single Image with Transformers This is the official implementation of "3D Human Texture Estimation from

XiangyuXu 193 Dec 05, 2022
Pytorch ImageNet1k Loader with Bounding Boxes.

ImageNet 1K Bounding Boxes For some experiments, you might wanna pass only the background of imagenet images vs passing only the foreground. Here, I'v

Amin Ghiasi 11 Oct 15, 2022
Python module providing a framework to trace individual edges in an image using Gaussian process regression.

Edge Tracing using Gaussian Process Regression Repository storing python module which implements a framework to trace individual edges in an image usi

Jamie Burke 7 Dec 27, 2022
Pytorch version of SfmLearner from Tinghui Zhou et al.

SfMLearner Pytorch version This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghu

Clément Pinard 909 Dec 22, 2022
Learning from Synthetic Humans, CVPR 2017

Learning from Synthetic Humans (SURREAL) Gül Varol, Javier Romero, Xavier Martin, Naureen Mahmood, Michael J. Black, Ivan Laptev and Cordelia Schmid,

Gul Varol 538 Dec 18, 2022
Simple Tensorflow implementation of Toward Spatially Unbiased Generative Models (ICCV 2021)

Spatial unbiased GANs — Simple TensorFlow Implementation [Paper] : Toward Spatially Unbiased Generative Models (ICCV 2021) Abstract Recent image gener

Junho Kim 16 Apr 15, 2022
ByteTrack: Multi-Object Tracking by Associating Every Detection Box

ByteTrack ByteTrack is a simple, fast and strong multi-object tracker. ByteTrack: Multi-Object Tracking by Associating Every Detection Box Yifu Zhang,

Yifu Zhang 2.9k Jan 04, 2023
A 1.3B text-to-image generation model trained on 14 million image-text pairs

minDALL-E on Conceptual Captions minDALL-E, named after minGPT, is a 1.3B text-to-image generation model trained on 14 million image-text pairs for no

Kakao Brain 604 Dec 14, 2022
Torch-ngp - A pytorch implementation of the hash encoder proposed in instant-ngp

HashGrid Encoder (WIP) A pytorch implementation of the HashGrid Encoder from ins

hawkey 1k Jan 01, 2023
🎃 Core identification module of AI powerful point reading system platform.

ppReader-Kernel Intro Core identification module of AI powerful point reading system platform. Usage 硬件: Windows10、GPU:nvdia GTX 1060 、普通RBG相机 软件: con

CrashKing 1 Jan 11, 2022
Code for ICLR2018 paper: Improving GAN Training via Binarized Representation Entropy (BRE) Regularization - Y. Cao · W Ding · Y.C. Lui · R. Huang

code for "Improving GAN Training via Binarized Representation Entropy (BRE) Regularization" (ICLR2018 paper) paper: https://arxiv.org/abs/1805.03644 G

21 Oct 12, 2020