Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

Overview

Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving

This is the source code for our paper Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving by Mu Cai, Hong Zhang, Huijuan Huang, Qichuan Geng, Yixuan Li and Gao Huang. Code is modified from Swapping Autoencoder, StarGAN v2, Image2StyleGAN.

This is a frequency-based image translation framework that is effective for identity preserving and image realism. Our key idea is to decompose the image into low-frequency and high-frequency components, where the high-frequency feature captures object structure akin to the identity. Our training objective facilitates the preservation of frequency information in both pixel space and Fourier spectral space.

model_architecture

1. Swapping Autoencoder

Dataset Preparation

You can download the following datasets:

Then place the training data and validation data in ./swapping-autoencoder/dataset/.

Train the model

You can train the model using either lmdb or folder format. For training the FDIT assisted Swapping Autoencoder, please run:

cd swapping-autoencoder 
bash train.sh

Change the location of the dataset according to your own setting.

Evaluate the model

Generate image hybrids

Place the source images and reference images under the folder ./sample_pair/source and ./sample_pair/ref respectively. The two image pairs should have the exact same index, such as 0.png, 1.png, ...

To generate the image hybrids according to the source and reference images, please run:

bash eval_pairs.sh

Evaluate the image quality

To evaluate the image quality using Fréchet Inception Distance (FID), please run

bash eval.sh

The pretrained model is provided here.

2. Image2StyleGAN

Prepare the dataset

You can place your own images or our official dataset under the folder ./Image2StlyleGAN/source_image. If using our dataset, then unzip it into that folder.

cd Image2StlyleGAN
unzip source_image.zip 

Get the weight files

To get the pretrained weights in StyleGAN, please run:

cd Image2StlyleGAN/weight_files/pytorch
wget https://pages.cs.wisc.edu/~mucai/fdit/karras2019stylegan-ffhq-1024x1024.pt

Run GAN-inversion model:

Single image inversion

Run the following command by specifying the name of the image image_name:

python encode_image_freq.py --src_im  image_name

Group images inversion

Please run

python encode_image_freq_batch.py 

Quantitative Evaluation

To get the image reconstruction metrics such as MSE, MAE, PSNR, please run:

python eval.py         

3. StarGAN v2

Prepare the dataset

Please download the CelebA-HQ-Smile dataset into ./StarGANv2/data

Train the model

To train the model in Tesla V100, please run:

cd StarGANv2
bash train.sh

Evaluation

To get the image translation samples and image quality measures like FID, please run:

bash eval.sh

Pretrained Model

The pretrained model can be found here.

Image Translation Results

FDIT achieves state-of-the-art performance in several image translation and even GAN-inversion models.

demo

Citation

If you use our codebase or datasets, please cite our work:

@article{cai2021frequency,
title={Frequency Domain Image Translation: More Photo-realistic, Better Identity-preserving},
author={Cai, Mu and Zhang, Hong and Huang, Huijuan and Geng, Qichuan and Li, Yixuan and Huang, Gao},
journal={In Proceedings of International Conference on Computer Vision (ICCV)},
year={2021}
}
Owner
Mu Cai
Computer Sciences Ph.D. @UW-Madison
Mu Cai
🔊 Audio and fastai v2

Fastaudio An audio module for fastai v2. We want to help you build audio machine learning applications while minimizing the need for audio domain expe

152 Dec 28, 2022
PyTorch implementation of Soft-DTW: a Differentiable Loss Function for Time-Series in CUDA

Soft DTW Loss Function for PyTorch in CUDA This is a Pytorch Implementation of Soft-DTW: a Differentiable Loss Function for Time-Series which is batch

Keon Lee 76 Dec 20, 2022
R-package accompanying the paper "Dynamic Factor Model for Functional Time Series: Identification, Estimation, and Prediction"

dffm The goal of dffm is to provide functionality to apply the methods developed in the paper “Dynamic Factor Model for Functional Time Series: Identi

Sven Otto 3 Dec 09, 2022
A font family with a great monospaced variant for programmers.

Fantasque Sans Mono A programming font, designed with functionality in mind, and with some wibbly-wobbly handwriting-like fuzziness that makes it unas

Jany Belluz 6.3k Jan 08, 2023
SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images.

SSPNet: Scale Selection Pyramid Network for Tiny Person Detection from UAV Images (IEEE GRSL 2021) Code (based on mmdetection) for SSPNet: Scale Selec

Italian Cannon 37 Dec 28, 2022
PyTorch implementation of the cross-modality generative model that synthesizes dance from music.

Dancing to Music PyTorch implementation of the cross-modality generative model that synthesizes dance from music. Paper Hsin-Ying Lee, Xiaodong Yang,

NVIDIA Research Projects 485 Dec 26, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation

AtlasNet [Project Page] [Paper] [Talk] AtlasNet: A Papier-Mâché Approach to Learning 3D Surface Generation Thibault Groueix, Matthew Fisher, Vladimir

577 Dec 17, 2022
This is an early in-development version of training CLIP models with hivemind.

A transformer that does not hog your GPU memory This is an early in-development codebase: if you want a stable and documented hivemind codebase, look

<a href=[email protected]"> 4 Nov 06, 2022
Space-event-trace - Tracing service for spaceteam events

space-event-trace Tracing service for TU Wien Spaceteam events. This service is

TU Wien Space Team 2 Jan 04, 2022
Fully Convolutional DenseNets for semantic segmentation.

Introduction This repo contains the code to train and evaluate FC-DenseNets as described in The One Hundred Layers Tiramisu: Fully Convolutional Dense

485 Nov 26, 2022
El-Gamal on Elliptic Curve (Python)

El-Gamal-on-EC El-Gamal on Elliptic Curve (Python) References: https://docsdrive.com/pdfs/ansinet/itj/2005/299-306.pdf https://arxiv.org/ftp/arxiv/pap

3 May 04, 2022
Prefix-Tuning: Optimizing Continuous Prompts for Generation

Prefix Tuning Files: . ├── gpt2 # Code for GPT2 style autoregressive LM │ ├── train_e2e.py # high-level script

530 Jan 04, 2023
This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning"

CSP_Deep_EEG This source code is implemented using keras library based on "Automatic ocular artifacts removal in EEG using deep learning" {https://www

Seyed Mahdi Roostaiyan 2 Nov 08, 2022
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
Pytorch Lightning Implementation of SC-Depth Methods.

SC_Depth_pl: This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video. In the V1 (IJ

JiaWang Bian 216 Dec 30, 2022
Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph

NIRPS-ETC Exposure Time Calculator (ETC) and radial velocity precision estimator for the Near InfraRed Planet Searcher (NIRPS) spectrograph February 2

Nolan Grieves 2 Sep 15, 2022
[CVPR 2021] 'Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator'

[CVPR2021] Searching by Generating: Flexible and Efficient One-Shot NAS with Architecture Generator Overview This is the entire codebase for the paper

35 Dec 01, 2022
This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine

LSHTM_RCS This repository contains project created during the Data Challenge module at London School of Hygiene & Tropical Medicine (LSHTM) in collabo

Lukas Kopecky 3 Jan 30, 2022
Project dự đoán giá cổ phiếu bằng thuật toán LSTM gồm: code train và code demo

Web predicts stock prices using Long - Short Term Memory algorithm Give me some start please!!! User interface image: Choose: DayBegin, DayEnd, Stock

Vo Thuong Truong Nhon 8 Nov 11, 2022