RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

Overview

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

Real tiem detection

Real-time detection performance.

This repo contains the code and extra simulation results supporting the paper 'Robust Moving Target Defence Against False Data Injection Attacks in Power Grids' by Wangkun Xu, Imad M. Jaimoukha, and Fei Teng. The authors are with the Control and Power Group, Dept. of EEE, Imperial College London.

Note: The current version is incomplete, detailed algorithms are coming soon.

Installation

This project requires Python packages to run. The testing OS is Windows.

  1. Install the latest version Anaconda to your OS.
  2. Create a new env in Anaconda Prompt by conda create -n robust-mtd python=3.8.12.
  3. Direct to the env by conda activate robust-mtd.
  4. Install all requirements by conda install --file requirements.txt.
  5. Download everything to your PC in your_path and redirect to your path by cd your_path.

Packages

PYPOWER

POPOWER is a power flow and optimal power flow solver. It is part of MATPOWER to the Python programming language. We will use PYPOWER as the environment to build the system matrices, implement attacks and implement the MTD.

SciPy

SciPy provides algorithms for optimization, integration, interpolation, eigenvalue problems, algebraic equations, differential equations, statistics and many other classes of problems. In specific, we use the open source optimization solve 'Sequential Least Squares Programming (SLSQP)' to solve the nonlinear programming problem.

Running and Testing

  1. Change the test system, algorithm, and constraints, e.g. change everything in input_setting.py under the line:

    """
    EDIT HERE : CHANGE YOUR SETTINGS HERE!
    """ 
    

    Do not change elsewhere!

    The current support tests include:

    • case: IEEE case-6ww, case-14, and case-57;
    • MTD perturbation ratio: $\tau=0.2,0.3,0.4,0.5$;
    • Placement of D-FACTS devices: All, outcome of the 'D-FACTS Devices Placement Algorithm' (using the minimum number of D-FACTS devices to have minimum k while covering all necessary buses), and the outcome of the 'D-FACTS Devices Placement Algorithm' (using the minimum number of D-FACTS devices to have minimum k);
    • hidden_MTD: True or False. Normally, the robust algorithm with complete MTD configuration is not tested with the hiddenness;
    • column_constraint: True or False. If True, the constraint in principle 2 is added.

    You can also change:

    • The measurement noise covariance matrix;
    • The FPR of BDD;
    • The attack strength under test;

    The code is flexible. You can also add your own system as long as it uses PYPOWER or MATPOWER to formulate.

Extra Simulation Result

Owner
Ph.D. student at Control and Power Group, Imperial College London.
给yolov5加个gui界面,使用pyqt5,yolov5是5.0版本

博文地址 https://xugaoxiang.com/2021/06/30/yolov5-pyqt5 代码执行 项目中使用YOLOv5的v5.0版本,界面文件是project.ui pip install -r requirements.txt python main.py 图片检测 视频检测

Xu GaoXiang 215 Dec 30, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Indoor Panorama Planar 3D Reconstruction via Divide and Conquer

HV-plane reconstruction from a single 360 image Code for our paper in CVPR 2021: Indoor Panorama Planar 3D Reconstruction via Divide and Conquer (pape

sunset 36 Jan 03, 2023
A Closer Look at Invalid Action Masking in Policy Gradient Algorithms

A Closer Look at Invalid Action Masking in Policy Gradient Algorithms This repo contains the source code to reproduce the results in the paper A Close

Costa Huang 73 Dec 24, 2022
A multilingual version of MS MARCO passage ranking dataset

mMARCO A multilingual version of MS MARCO passage ranking dataset This repository presents a neural machine translation-based method for translating t

75 Dec 27, 2022
TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li

DamoCV 25 Dec 16, 2022
A new benchmark for Icon Question Answering (IconQA) and a large-scale icon dataset Icon645.

IconQA About IconQA is a new diverse abstract visual question answering dataset that highlights the importance of abstract diagram understanding and c

Pan Lu 24 Dec 30, 2022
Official code for CVPR2022 paper: Depth-Aware Generative Adversarial Network for Talking Head Video Generation

📖 Depth-Aware Generative Adversarial Network for Talking Head Video Generation (CVPR 2022) 🔥 If DaGAN is helpful in your photos/projects, please hel

Fa-Ting Hong 503 Jan 04, 2023
Practical tutorials and labs for TensorFlow used by Nvidia, FFN, CNN, RNN, Kaggle, AE

TensorFlow Tutorial - used by Nvidia Learn TensorFlow from scratch by examples and visualizations with interactive jupyter notebooks. Learn to compete

Alexander R Johansen 1.9k Dec 19, 2022
a baseline to practice

ccks2021_track3_baseline a baseline to practice 路径可能会有问题,自己改改 torch==1.7.1 pyhton==3.7.1 transformers==4.7.0 cuda==11.0 this is a baseline, you can fi

45 Nov 23, 2022
Implementation of EMNLP 2017 Paper "Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog" using PyTorch and ParlAI

Language Emergence in Multi Agent Dialog Code for the Paper Natural Language Does Not Emerge 'Naturally' in Multi-Agent Dialog Satwik Kottur, José M.

Karan Desai 105 Nov 25, 2022
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022
PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentation.

Shape-aware Convolutional Layer (ShapeConv) PyTorch implementation of ShapeConv: Shape-aware Convolutional Layer for RGB-D Indoor Semantic Segmentatio

Hanchao Leng 82 Dec 29, 2022
Data loaders and abstractions for text and NLP

torchtext This repository consists of: torchtext.datasets: The raw text iterators for common NLP datasets torchtext.data: Some basic NLP building bloc

3.2k Jan 08, 2023
[ACL-IJCNLP 2021] Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning

CLNER The code is for our ACL-IJCNLP 2021 paper: Improving Named Entity Recognition by External Context Retrieving and Cooperative Learning CLNER is a

71 Dec 08, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Stock-history-display - something like a easy yearly review for your stock performance

Stock History Display Available on Heroku: https://stock-history-display.herokua

LiaoJJ 1 Jan 07, 2022
The repo contains the code of the ACL2020 paper `Dice Loss for Data-imbalanced NLP Tasks`

Dice Loss for NLP Tasks This repository contains code for Dice Loss for Data-imbalanced NLP Tasks at ACL2020. Setup Install Package Dependencies The c

223 Dec 17, 2022