RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

Overview

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

Real tiem detection

Real-time detection performance.

This repo contains the code and extra simulation results supporting the paper 'Robust Moving Target Defence Against False Data Injection Attacks in Power Grids' by Wangkun Xu, Imad M. Jaimoukha, and Fei Teng. The authors are with the Control and Power Group, Dept. of EEE, Imperial College London.

Note: The current version is incomplete, detailed algorithms are coming soon.

Installation

This project requires Python packages to run. The testing OS is Windows.

  1. Install the latest version Anaconda to your OS.
  2. Create a new env in Anaconda Prompt by conda create -n robust-mtd python=3.8.12.
  3. Direct to the env by conda activate robust-mtd.
  4. Install all requirements by conda install --file requirements.txt.
  5. Download everything to your PC in your_path and redirect to your path by cd your_path.

Packages

PYPOWER

POPOWER is a power flow and optimal power flow solver. It is part of MATPOWER to the Python programming language. We will use PYPOWER as the environment to build the system matrices, implement attacks and implement the MTD.

SciPy

SciPy provides algorithms for optimization, integration, interpolation, eigenvalue problems, algebraic equations, differential equations, statistics and many other classes of problems. In specific, we use the open source optimization solve 'Sequential Least Squares Programming (SLSQP)' to solve the nonlinear programming problem.

Running and Testing

  1. Change the test system, algorithm, and constraints, e.g. change everything in input_setting.py under the line:

    """
    EDIT HERE : CHANGE YOUR SETTINGS HERE!
    """ 
    

    Do not change elsewhere!

    The current support tests include:

    • case: IEEE case-6ww, case-14, and case-57;
    • MTD perturbation ratio: $\tau=0.2,0.3,0.4,0.5$;
    • Placement of D-FACTS devices: All, outcome of the 'D-FACTS Devices Placement Algorithm' (using the minimum number of D-FACTS devices to have minimum k while covering all necessary buses), and the outcome of the 'D-FACTS Devices Placement Algorithm' (using the minimum number of D-FACTS devices to have minimum k);
    • hidden_MTD: True or False. Normally, the robust algorithm with complete MTD configuration is not tested with the hiddenness;
    • column_constraint: True or False. If True, the constraint in principle 2 is added.

    You can also change:

    • The measurement noise covariance matrix;
    • The FPR of BDD;
    • The attack strength under test;

    The code is flexible. You can also add your own system as long as it uses PYPOWER or MATPOWER to formulate.

Extra Simulation Result

Owner
Ph.D. student at Control and Power Group, Imperial College London.
mmfewshot is an open source few shot learning toolbox based on PyTorch

OpenMMLab FewShot Learning Toolbox and Benchmark

OpenMMLab 514 Dec 28, 2022
Novel and high-performance medical image classification pipelines are heavily utilizing ensemble learning strategies

An Analysis on Ensemble Learning optimized Medical Image Classification with Deep Convolutional Neural Networks Novel and high-performance medical ima

14 Dec 18, 2022
This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation

TransFuse This repo holds the code of TransFuse: Fusing Transformers and CNNs for Medical Image Segmentation Requirements Pytorch=1.6.0, 1.9.0 (=1.

Rayicer 93 Dec 19, 2022
Code for Neurips2021 Paper "Topology-Imbalance Learning for Semi-Supervised Node Classification".

Topology-Imbalance Learning for Semi-Supervised Node Classification Introduction Code for NeurIPS 2021 paper "Topology-Imbalance Learning for Semi-Sup

Victor Chen 40 Nov 23, 2022
Official repository for "PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long Text Generation"

pair-emnlp2020 Official repository for the paper: Xinyu Hua and Lu Wang: PAIR: Planning and Iterative Refinement in Pre-trained Transformers for Long

Xinyu Hua 31 Oct 13, 2022
The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

AICITY2021_Track2_DMT The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop. Introduction

Hao Luo 91 Dec 21, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
Tensorflow implementation and notebooks for Implicit Maximum Likelihood Estimation

tf-imle Tensorflow 2 and PyTorch implementation and Jupyter notebooks for Implicit Maximum Likelihood Estimation (I-MLE) proposed in the NeurIPS 2021

NEC Laboratories Europe 69 Dec 13, 2022
This Artificial Intelligence program can take a black and white/grayscale image and generate a realistic or plausible colorized version of the same picture.

Colorizer The point of this project is to write a program capable of taking a black and white / grayscale image, and generating a realistic or plausib

Maitri Shah 1 Jan 06, 2022
The Codebase for Causal Distillation for Language Models.

Causal Distillation for Language Models Zhengxuan Wu*,Atticus Geiger*, Josh Rozner, Elisa Kreiss, Hanson Lu, Thomas Icard, Christopher Potts, Noah D.

Zen 20 Dec 31, 2022
Time Delayed NN implemented in pytorch

Pytorch Time Delayed NN Time Delayed NN implemented in PyTorch. Usage kernels = [(1, 25), (2, 50), (3, 75), (4, 100), (5, 125), (6, 150)] tdnn = TDNN

Daniil Gavrilov 79 Aug 04, 2022
🥇Samsung AI Challenge 2021 1등 솔루션입니다🥇

MoT - Molecular Transformer Large-scale Pretraining for Molecular Property Prediction Samsung AI Challenge for Scientific Discovery This repository is

Jungwoo Park 44 Dec 03, 2022
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline

vqvae_dwt_distiller.pytorch Simple improvement of VQVAE that allow to generate x2 sized images compared to baseline. It allows to generate 512x512 ima

Sergei Belousov 25 Jul 19, 2022
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 25, 2022
PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our paper

Flow Gaussian Mixture Model (FlowGMM) This repository contains a PyTorch implementation of the Flow Gaussian Mixture Model (FlowGMM) model from our pa

Pavel Izmailov 124 Nov 06, 2022
Variational autoencoder for anime face reconstruction

VAE animeface Variational autoencoder for anime face reconstruction Introduction This repository is an exploratory example to train a variational auto

Minzhe Zhang 2 Dec 11, 2021
PyTorch implementation of ICLR 2022 paper PiCO: Contrastive Label Disambiguation for Partial Label Learning

PiCO: Contrastive Label Disambiguation for Partial Label Learning This is a PyTorch implementation of ICLR 2022 Oral paper PiCO; also see our Project

王皓波 147 Jan 07, 2023
CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields

CAMPARI: Camera-Aware Decomposed Generative Neural Radiance Fields Paper | Supplementary | Video | Poster If you find our code or paper useful, please

26 Nov 29, 2022
Amazon Forest Computer Vision: Satellite Image tagging code using PyTorch / Keras with lots of PyTorch tricks

Amazon Forest Computer Vision Satellite Image tagging code using PyTorch / Keras Here is a sample of images we had to work with Source: https://www.ka

Mamy Ratsimbazafy 359 Jan 05, 2023