Naszilla is a Python library for neural architecture search (NAS)

Overview

License

A repository to compare many popular NAS algorithms seamlessly across three popular benchmarks (NASBench 101, 201, and 301). You can implement your own NAS algorithm, and then easily compare it with eleven algorithms across three benchmarks.

This repository contains the official code for the following three papers:

Paper README Blog Post
A Study on Encodings for Neural Architecture Search encodings.md Blog Post
BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search bananas.md Blog Post
Exploring the Loss Landscape in Neural Architecture Search local_search.md Blog Post

Installation

Clone this repository and install its requirements (which includes nasbench, nas-bench-201, and nasbench301). It may take a few minutes.

git clone https://github.com/naszilla/naszilla
cd naszilla
cat requirements.txt | xargs -n 1 -L 1 pip install
pip install -e .

You might need to replace line 32 of src/nasbench301/surrogate_models/surrogate_models.py with a new path to the configspace file:

self.config_loader = utils.ConfigLoader(os.path.expanduser('~/naszilla/src/nasbench301/configspace.json'))

Next, download the nas benchmark datasets (either with the terminal commands below, or from their respective websites (nasbench, nas-bench-201, and nasbench301). The versions recommended for use with naszilla are nasbench_only108.tfrecord, NAS-Bench-201-v1_0-e61699.pth, and nasbench301_models_v0.9.zip. If you use a different version, you might need to edit some of the naszilla code.

# these files are 0.5GB, 2.1GB, and 1.6GB, respectively
wget https://storage.googleapis.com/nasbench/nasbench_only108.tfrecord
wget https://ndownloader.figshare.com/files/25506206?private_link=7d47bf57803227af4909 -O NAS-Bench-201-v1_0-e61699.pth
wget https://ndownloader.figshare.com/files/24693026 -O nasbench301_models_v0.9.zip
unzip nasbench301_models_v0.9.zip

Place the three downloaded benchmark data files in ~/nas_benchmark_datasets (or choose another directory and edit line 15 of naszilla/nas_benchmarks.py accordingly).

Now you have successfully installed all of the requirements to run eleven NAS algorithms on three benchmark search spaces!

Test Installation

You can test the installation by running these commands:

cd naszilla
python naszilla/run_experiments.py --search_space nasbench_101 --algo_params all_algos --queries 30 --trials 1
python naszilla/run_experiments.py --search_space nasbench_201 --algo_params all_algos --queries 30 --trials 1
python naszilla/run_experiments.py --search_space nasbench_301 --algo_params all_algos --queries 30 --trials 1

These experiments should finish running within a few minutes.

Run NAS experiments on NASBench-101/201/301 search spaces

cd naszilla
python naszilla/run_experiments.py --search_space nasbench_201 --dataset cifar100 --queries 100 --trials 100

This will test several NAS algorithms against each other on the NASBench-201 search space. Note that NASBench-201 allows you to specify one of three datasets: cifar10, cifar100, or imagenet. To customize your experiment, open naszilla/params.py. Here, you can change the algorithms and their hyperparameters. For details on running specific methods, see these docs.

Contributions

Contributions are welcome!

Reproducibility

If you have any questions about reproducing an experiment, please open an issue or email [email protected].

Citation

Please cite our papers if you use code from this repo:

@inproceedings{white2020study,
  title={A Study on Encodings for Neural Architecture Search},
  author={White, Colin and Neiswanger, Willie and Nolen, Sam and Savani, Yash},
  booktitle={Advances in Neural Information Processing Systems},
  year={2020}
}

@inproceedings{white2021bananas,
  title={BANANAS: Bayesian Optimization with Neural Architectures for Neural Architecture Search},
  author={White, Colin and Neiswanger, Willie and Savani, Yash},
  booktitle={Proceedings of the AAAI Conference on Artificial Intelligence},
  year={2021}
}

@inproceedings{white2021exploring,
  title={Exploring the Loss Landscape in Neural Architecture Search},
  author={White, Colin and Nolen, Sam and Savani, Yash},
  booktitle={Uncertainty in Artificial Intelligence},
  organization={PMLR},
  year={2021}
}

Contents

This repo contains encodings for neural architecture search, a variety of NAS methods (including BANANAS, a neural predictor Bayesian optimization method, and local search for NAS), and an easy interface for using multiple NAS benchmarks.

Encodings:

encodings

BANANAS:

adj_train adj_test path_train path_test

Local search:

local_search

A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
Pytorch Implementation of Various Point Transformers

Pytorch Implementation of Various Point Transformers Recently, various methods applied transformers to point clouds: PCT: Point Cloud Transformer (Men

Neil You 434 Dec 30, 2022
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" in Pytorch.

GLOM An implementation of Geoffrey Hinton's paper "How to represent part-whole hierarchies in a neural network" for MNIST Dataset. To understand this

50 Oct 19, 2022
Algorithms for outlier, adversarial and drift detection

Alibi Detect is an open source Python library focused on outlier, adversarial and drift detection. The package aims to cover both online and offline d

Seldon 1.6k Dec 31, 2022
Geometry-Free View Synthesis: Transformers and no 3D Priors

Geometry-Free View Synthesis: Transformers and no 3D Priors Geometry-Free View Synthesis: Transformers and no 3D Priors Robin Rombach*, Patrick Esser*

CompVis Heidelberg 293 Dec 22, 2022
A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

A Jinja extension (compatible with Flask and other frameworks) to compile and/or compress your assets.

Jayson Reis 94 Nov 21, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
CS50's Introduction to Artificial Intelligence Test Scripts

CS50's Introduction to Artificial Intelligence Test Scripts 🤷‍♂️ What's this? 🤷‍♀️ This repository contains Python scripts to automate tests for mos

Jet Kan 2 Dec 28, 2022
Some pvbatch (paraview) scripts for postprocessing OpenFOAM data

pvbatchForFoam Some pvbatch (paraview) scripts for postprocessing OpenFOAM data For every script there is a help message available: pvbatch pv_state_s

Morev Ilya 2 Oct 26, 2022
Zsseg.baseline - Zero-Shot Semantic Segmentation

This repo is for our paper A Simple Baseline for Zero-shot Semantic Segmentation

98 Dec 20, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022
Python library for computer vision labeling tasks. The core functionality is to translate bounding box annotations between different formats-for example, from coco to yolo.

PyLabel pip install pylabel PyLabel is a Python package to help you prepare image datasets for computer vision models including PyTorch and YOLOv5. I

PyLabel Project 176 Jan 01, 2023
Efficient semidefinite bounds for multi-label discrete graphical models.

Low rank solvers #################################### benchmark/ : folder with the random instances used in the paper. ############################

1 Dec 08, 2022
A curated list of resources for Image and Video Deblurring

A curated list of resources for Image and Video Deblurring

Subeesh Vasu 1.7k Jan 01, 2023
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
EfficientNetV2 implementation using PyTorch

EfficientNetV2-S implementation using PyTorch Train Steps Configure imagenet path by changing data_dir in train.py python main.py --benchmark for mode

Jahongir Yunusov 86 Dec 29, 2022