TransPrompt - Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification

Overview

TransPrompt

This code is implement for our EMNLP 2021's paper 《TransPrompt:Towards an Automatic Transferable Prompting Framework for Few-shot Text Classification》.

Our proposed TransPrompt is motivated by the join of prompt-tuning and cross-task transfer learning. The aim is to explore and exploit the transferable knowledge from similar tasks in the few-shot scenario, and make the Pre-trained Language Model (PLM) better few-shot transfer learner. Our proposed framework is accepted by the main conference (long paper track) in EMNLP-2021. This code is the default multi-GPU version. We will teach you how to use our code in the following parts.

Ps: We also commit the same code in Alibaba EasyTransfer.

1. Data Preparation

We follow PET to use the same dataset. Please run the scripts to download the data:

sh data/download_data.sh

or manually download the dataset from https://nlp.cs.princeton.edu/projects/lm-bff/datasets.tar.

Then you will obtain a new director data/original

Our work has two kind of scenario, such as single-task and cross-task. Different kind scenario has corresponding splited examples. Defaultly, we generate few-shot learning examples, you can also generate full data by edit the parameter (-scene=full). We only demostrate the few-shot data generation.

1.1 Single-task Few-shot

Please run the scripts to obtain the single-task few-shot examples:

python3 data_utils/generate_k_shot_data.py --scene few-shot --k 16

Then you will obtain a new folder data/k-shot-single

1.2 Cross-task Few-shot

Run the scripts

python3 data_utils/generate_k_shot_cross_task_data.py --scene few-shot --k 16

and you will obtain a new folder data/k-shot-cross

After the generation, the similar tasks will be divided into the same group. We have three groups:

  • Group1 (Sentiment Analysis): SST-2, MR, CR
  • Group2 (Natural Language Inference): MNLI, SNLI
  • Group3 (Paraphrasing): MRPC, QQP

2. Have a Training Games

Please follow our papers, we have mask following experiments:

  • Single-task few-shot learning: It is the same as LM-BFF and P-tuning, we prompt-tune the PLM only on one task.
  • Cross-task few-shot learning: We mix up the similar task in group. At first, we prompt-tune the PLM on cross-task data, then we prompt-tune on each task again. For the Cross-task Learning, we have two cross-task method:
  • (Cross-)Task Adaptation: In one group, we prompt-tune on all the tasks, and then evaluate on each task both in few-shot scenario.
  • (Cross-)Task Generalization: In one group, we randomly choose one task for few-shot evaluation (do not used for training), others are used for prompt-tuning.

2.1 Single-task few-shot learning

Take MRPC as an example, please run:

CUDA_VISIBLE_DEVICES=0 sh scripts/run_single_task.sh

figure1.png

2.2 Cross-task few-shot Learning (Task Adaptaion)

Take Group1 as an example, please run the scripts:

CUDA_VISIBLE_DEVICES=0 sh scripts/run_cross_task_adaptation.sh

figure2.png

2.3 Cross-task few-shot Learning (Task Generalization)

Also take Group1 as an example, please run the scripts: Ps: the unseen task is SST-2.

CUDA_VISIBLE_DEVICES=0 sh scripts/run_cross_task_generalization.sh

figure3.png

Citation

Our paper citation is:

@inproceedings{DBLP:conf/emnlp/0001WQH021,
  author    = {Chengyu Wang and
               Jianing Wang and
               Minghui Qiu and
               Jun Huang and
               Ming Gao},
  editor    = {Marie{-}Francine Moens and
               Xuanjing Huang and
               Lucia Specia and
               Scott Wen{-}tau Yih},
  title     = {TransPrompt: Towards an Automatic Transferable Prompting Framework
               for Few-shot Text Classification},
  booktitle = {Proceedings of the 2021 Conference on Empirical Methods in Natural
               Language Processing, {EMNLP} 2021, Virtual Event / Punta Cana, Dominican
               Republic, 7-11 November, 2021},
  pages     = {2792--2802},
  publisher = {Association for Computational Linguistics},
  year      = {2021},
  url       = {https://aclanthology.org/2021.emnlp-main.221},
  timestamp = {Tue, 09 Nov 2021 13:51:50 +0100},
  biburl    = {https://dblp.org/rec/conf/emnlp/0001WQH021.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}

Acknowledgement

The code is developed based on pet. We appreciate all the authors who made their code public, which greatly facilitates this project. This repository would be continuously updated.

Owner
WangJianing
My name is Wang Jianing.Nowadays I am a postgraduate of East China Normal University in Shanghai.My research field is Machine Learning;Deep Learning and NLP
WangJianing
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed+Megatron trained the world's most powerful language model: MT-530B DeepSpeed is hiring, come join us! DeepSpeed is a deep learning optimizat

Microsoft 8.4k Dec 28, 2022
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
Official implementation of the paper 'High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network' in CVPR 2021

LPTN Paper | Supplementary Material | Poster High-Resolution Photorealistic Image Translation in Real-Time: A Laplacian Pyramid Translation Network Ji

372 Dec 26, 2022
This is a Image aid classification software based on python TK library development

This is a Image aid classification software based on python TK library development.

EasonChan 1 Jan 17, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
[TIP2020] Adaptive Graph Representation Learning for Video Person Re-identification

Introduction This is the PyTorch implementation for Adaptive Graph Representation Learning for Video Person Re-identification. Get started git clone h

WuYiming 41 Dec 12, 2022
Optimizers-visualized - Visualization of different optimizers on local minimas and saddle points.

Optimizers Visualized Visualization of how different optimizers handle mathematical functions for optimization. Contents Installation Usage Functions

Gautam J 1 Jan 01, 2022
Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visi

Fan Yang 346 Dec 30, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Discovering and Achieving Goals via World Models

Discovering and Achieving Goals via World Models [Project Website] [Benchmark Code] [Video (2min)] [Oral Talk (13min)] [Paper] Russell Mendonca*1, Ole

Oleg Rybkin 71 Dec 22, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
Differentiable Optimizers with Perturbations in Pytorch

Differentiable Optimizers with Perturbations in PyTorch This contains a PyTorch implementation of Differentiable Optimizers with Perturbations in Tens

Jake Tuero 54 Jun 22, 2022
Pytorch implementation of VAEs for heterogeneous likelihoods.

Heterogeneous VAEs Beware: This repository is under construction 🛠️ Pytorch implementation of different VAE models to model heterogeneous data. Here,

Adrián Javaloy 35 Nov 29, 2022
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
Code for ICE-BeeM paper - NeurIPS 2020

ICE-BeeM: Identifiable Conditional Energy-Based Deep Models Based on Nonlinear ICA This repository contains code to run and reproduce the experiments

Ilyes Khemakhem 65 Dec 22, 2022
TAUFE: Task-Agnostic Undesirable Feature DeactivationUsing Out-of-Distribution Data

A deep neural network (DNN) has achieved great success in many machine learning tasks by virtue of its high expressive power. However, its prediction can be easily biased to undesirable features, whi

KAIST Data Mining Lab 8 Dec 07, 2022
Learning High-Speed Flight in the Wild

Learning High-Speed Flight in the Wild This repo contains the code associated to the paper Learning Agile Flight in the Wild. For more information, pl

Robotics and Perception Group 391 Dec 29, 2022
Python code for the paper How to scale hyperparameters for quickshift image segmentation

How to scale hyperparameters for quickshift image segmentation Python code for the paper How to scale hyperparameters for quickshift image segmentatio

0 Jan 25, 2022