Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

Related tags

Deep Learningnex-code
Overview

NeX: Real-time View Synthesis with Neural Basis Expansion

Project Page | Video | Paper | COLAB | Shiny Dataset

Open NeX in Colab

NeX

We present NeX, a new approach to novel view synthesis based on enhancements of multiplane image (MPI) that can reproduce NeXt-level view-dependent effects---in real time. Unlike traditional MPI that uses a set of simple RGBα planes, our technique models view-dependent effects by instead parameterizing each pixel as a linear combination of basis functions learned from a neural network. Moreover, we propose a hybrid implicit-explicit modeling strategy that improves upon fine detail and produces state-of-the-art results. Our method is evaluated on benchmark forward-facing datasets as well as our newly-introduced dataset designed to test the limit of view-dependent modeling with significantly more challenging effects such as the rainbow reflections on a CD. Our method achieves the best overall scores across all major metrics on these datasets with more than 1000× faster rendering time than the state of the art.

Table of contents



Getting started

conda env create -f environment.yml
./download_demo_data.sh
conda activate nex
python train.py -scene data/crest_demo -model_dir crest -http
tensorboard --logdir runs/

Installation

We provide environment.yml to help you setup a conda environment.

conda env create -f environment.yml

Dataset

Shiny dataset

Download: Shiny dataset.

We provide 2 directories named shiny and shiny_extended.

  • shiny contains benchmark scenes used to report the scores in our paper.
  • shiny_extended contains additional challenging scenes used on our website project page and video

NeRF's real forward-facing dataset

Download: Undistorted front facing dataset

For real forward-facing dataset, NeRF is trained with the raw images, which may contain lens distortion. But we use the undistorted images provided by COLMAP.

However, you can try running other scenes from Local lightfield fusion (Eg. airplant) without any changes in the dataset files. In this case, the images are not automatically undistorted.

Deepview's spaces dataset

Download: Modified spaces dataset

We slightly modified the file structure of Spaces dataset in order to determine the plane placement and split train/test sets.

Using your own images.

Running NeX on your own images. You need to install COLMAP on your machine.

Then, put your images into a directory following this structure

<scene_name>
|-- images
     | -- image_name1.jpg
     | -- image_name2.jpg
     ...

The training code will automatically prepare a scene for you. You may have to tune planes.txt to get better reconstruction (see dataset explaination)

Training

Run with the paper's config

python train.py -scene ${PATH_TO_SCENE} -model_dir ${MODEL_TO_SAVE_CHECKPOINT} -http

This implementation uses scikit-image to resize images during training by default. The results and scores in the paper are generated using OpenCV's resize function. If you want the same behavior, please add -cv2resize argument.

Note that this code is tested on an Nvidia V100 32GB and 4x RTX 2080Ti GPU.

For a GPU/GPUs with less memory (e.g., a single RTX 2080Ti), you can run using the following command:

python train.py -scene ${PATH_TO_SCENE} -model_dir ${MODEL_TO_SAVE_CHECKPOINT} -http -layers 12 -sublayers 6 -hidden 256

Note that when your GPU runs ouut of memeory, you can try reducing the number of layers, sublayers, and sampled rays.

Rendering

To generate a WebGL viewer and a video result.

python train.py -scene ${scene} -model_dir ${MODEL_TO_SAVE_CHECKPOINT} -predict -http

Video rendering

To generate a video that matches the real forward-facing rendering path, add -nice_llff argument, or -nice_shiny for shiny dataset

Citation

@inproceedings{Wizadwongsa2021NeX,
    author = {Wizadwongsa, Suttisak and Phongthawee, Pakkapon and Yenphraphai, Jiraphon and Suwajanakorn, Supasorn},
    title = {NeX: Real-time View Synthesis with Neural Basis Expansion},
    booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 
    year = {2021},
}

Visit us 🦉

Vision & Learning Laboratory VISTEC - Vidyasirimedhi Institute of Science and Technology

OBBDetection: an oriented object detection toolbox modified from MMdetection

OBBDetection note: If you have questions or good suggestions, feel free to propose issues and contact me. introduction OBBDetection is an oriented obj

MIXIAOXIN_HO 3 Nov 11, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
It's like Shape Editor in Maya but works with skeletons (transforms).

Skeleposer What is Skeleposer? Briefly, it's like Shape Editor in Maya, but works with transforms and joints. It can be used to make complex facial ri

Alexander Zagoruyko 1 Nov 11, 2022
Another pytorch implementation of FCN (Fully Convolutional Networks)

FCN-pytorch-easiest Trying to be the easiest FCN pytorch implementation and just in a get and use fashion Here I use a handbag semantic segmentation f

Y. Dong 158 Dec 21, 2022
Repository for the electrical and ICT benchmark model developed in the ERIGrid 2.0 project.

Benchmark Model Electrical and ICT System This repository contains the documentation, code, and models for the electrical and ICT benchmark model deve

ERIGrid 2.0 1 Nov 29, 2021
Code release for DS-NeRF (Depth-supervised Neural Radiance Fields)

Depth-supervised NeRF: Fewer Views and Faster Training for Free Project | Paper | YouTube Pytorch implementation of our method for learning neural rad

524 Jan 08, 2023
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Semantic Segmentation in Pytorch

PyTorch Semantic Segmentation Introduction This repository is a PyTorch implementation for semantic segmentation / scene parsing. The code is easy to

Hengshuang Zhao 1.2k Jan 01, 2023
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation

RL-GAN: Transfer Learning for Related Reinforcement Learning Tasks via Image-to-Image Translation RL-GAN is an official implementation of the paper: T

42 Nov 10, 2022
Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks]

Neural Architecture Search for Spiking Neural Networks Pytorch implementation code for [Neural Architecture Search for Spiking Neural Networks] (https

Intelligent Computing Lab at Yale University 28 Nov 18, 2022
CodeContests is a competitive programming dataset for machine-learning

CodeContests CodeContests is a competitive programming dataset for machine-learning. This dataset was used when training AlphaCode. It consists of pro

DeepMind 1.6k Jan 08, 2023
An e-commerce company wants to segment its customers and determine marketing strategies according to these segments.

customer_segmentation_with_rfm Business Problem : An e-commerce company wants to

Buse Yıldırım 3 Jan 06, 2022
ICNet for Real-Time Semantic Segmentation on High-Resolution Images, ECCV2018

ICNet for Real-Time Semantic Segmentation on High-Resolution Images by Hengshuang Zhao, Xiaojuan Qi, Xiaoyong Shen, Jianping Shi, Jiaya Jia, details a

Hengshuang Zhao 594 Dec 31, 2022
Video Matting via Consistency-Regularized Graph Neural Networks

Video Matting via Consistency-Regularized Graph Neural Networks Project Page | Real Data | Paper Installation Our code has been tested on Python 3.7,

41 Dec 26, 2022
v objective diffusion inference code for JAX.

v-diffusion-jax v objective diffusion inference code for JAX, by Katherine Crowson (@RiversHaveWings) and Chainbreakers AI (@jd_pressman). The models

Katherine Crowson 186 Dec 21, 2022
This repository contains a PyTorch implementation of "AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis".

AD-NeRF: Audio Driven Neural Radiance Fields for Talking Head Synthesis | Project Page | Paper | PyTorch implementation for the paper "AD-NeRF: Audio

551 Dec 29, 2022
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

Abdultawwab Safarji 7 Nov 27, 2022
This repo is for segmentation of T2 hyp regions in gliomas.

T2-Hyp-Segmentor This repo is for segmentation of T2 hyp regions in gliomas. By downloading the model from here you can use it to segment your T2w ima

1 Jan 18, 2022