[NeurIPS 2021] “Improving Contrastive Learning on Imbalanced Data via Open-World Sampling”,

Related tags

Deep LearningMAK
Overview

Improving Contrastive Learning on Imbalanced Data via Open-World Sampling

Introduction

Contrastive learning approaches have achieved great success in learning visual representations with few labels. That implies a tantalizing possibility of scaling them up beyond a curated target benchmark, to incorporating more unlabeled images from the internet-scale external sources to enhance its performance. However, in practice, with larger amount of unlabeled data, it requires more compute resources for the bigger model size and longer training. Moreover, open-world unlabeled data have implicit long-tail distribution of various class attributes, many of which are out of distribution and can lead to data imbalancedness issue. This motivates us to seek a principled approach of selecting a subset of unlabeled data from an external source that are relevant for learning better and diverse representations. In this work, we propose an open-world unlabeled data sampling strategy called Model-Aware K-center (MAK), which follows three simple principles: (1) tailness, which encourages sampling of examples from tail classes, by sorting the empirical contrastive loss expectation (ECLE) of samples over random data augmentations; (2) proximity, which rejects the out-of-distribution outliers that might distract training; and (3) diversity, which ensures diversity in the set of sampled examples. Empirically, using ImageNet-100-LT (without labels) as the target dataset and two ``noisy'' external data sources, we demonstrate that MAK can consistently improve both the overall representation quality and class balancedness of the learned features, as evaluated via linear classifier evaluation on full-shot and few-shot settings.

Method

pipeline

Environment

Requirements:

pytorch 1.7.1 
opencv-python
kmeans-pytorch 0.3
scikit-learn

Recommend installation cmds (linux)

conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=10.2 -c pytorch # change cuda version according to hardware
pip install opencv-python
conda install -c conda-forge matplotlib scikit-learn

Sampling

Prepare

change the access permissions

chmod +x  cmds/shell_scrips/*

Get pre-trained model on LT datasets

bash ./cmds/shell_scrips/imagenet-100-add-data.sh -g 2 -p 4866 -w 10 --seed 10 --additional_dataset None

Sampling on ImageNet 900

Inference

inference on sampling dataset (no Aug)

bash ./cmds/shell_scrips/imagenet-100-inference.sh -p 5555 --workers 10 --pretrain_seed 10 \
--epochs 1000 --batch_size 256 --inference_dataset imagenet-900 --inference_dataset_split ImageNet_900_train \
--inference_repeat_time 1 --inference_noAug True

inference on sampling dataset (no Aug)

bash ./cmds/shell_scrips/imagenet-100-inference.sh -p 5555 --workers 10 --pretrain_seed 10 \
--epochs 1000 --batch_size 256 --inference_dataset imagenet-100 --inference_dataset_split imageNet_100_LT_train \
--inference_repeat_time 1 --inference_noAug True

inference on sampling dataset (w/ Aug)

bash ./cmds/shell_scrips/imagenet-100-inference.sh -p 5555 --workers 10 --pretrain_seed 10 \
--epochs 1000 --batch_size 256 --inference_dataset imagenet-900 --inference_dataset_split ImageNet_900_train \
--inference_repeat_time 10

sampling 10K at Imagenet900

bash ./cmds/shell_scrips/sampling.sh --pretrain_seed 10

Citation

@inproceedings{
jiang2021improving,
title={Improving Contrastive Learning on Imbalanced Data via Open-World Sampling},
author={Jiang, Ziyu and Chen, Tianlong and Chen, Ting and Wang, Zhangyang},
booktitle={Advances in Neural Information Processing Systems 35},
year={2021}
}
Owner
VITA
Visual Informatics Group @ University of Texas at Austin
VITA
As-ViT: Auto-scaling Vision Transformers without Training

As-ViT: Auto-scaling Vision Transformers without Training [PDF] Wuyang Chen, Wei Huang, Xianzhi Du, Xiaodan Song, Zhangyang Wang, Denny Zhou In ICLR 2

VITA 68 Sep 05, 2022
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
Towards Boosting the Accuracy of Non-Latin Scene Text Recognition

Convolutional Recurrent Neural Network + CTCLoss | STAR-Net Code for paper "Towards Boosting the Accuracy of Non-Latin Scene Text Recognition" Depende

Sanjana Gunna 7 Aug 07, 2022
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene.

DirectVoxGO reconstructs a scene representation from a set of calibrated images capturing the scene. We achieve NeRF-comparable novel-view synthesis quality with super-fast convergence.

sunset 709 Dec 31, 2022
a short visualisation script for pyvideo data

PyVideo Speakers A CLI that visualises repeat speakers from events listed in https://github.com/pyvideo/data Not terribly efficient, but you know. Ins

Katie McLaughlin 3 Nov 24, 2021
Jremesh-tools - Blender addon for quad remeshing

JRemesh Tools Blender 2.8 - 3.x addon for quad remeshing. Currently it is a wrap

Jayanam 89 Dec 30, 2022
Boundary-preserving Mask R-CNN (ECCV 2020)

BMaskR-CNN This code is developed on Detectron2 Boundary-preserving Mask R-CNN ECCV 2020 Tianheng Cheng, Xinggang Wang, Lichao Huang, Wenyu Liu Video

Hust Visual Learning Team 178 Nov 28, 2022
RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

Hong Wang 6 Sep 27, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
A data annotation pipeline to generate high-quality, large-scale speech datasets with machine pre-labeling and fully manual auditing.

About This repository provides data and code for the paper: Scalable Data Annotation Pipeline for High-Quality Large Speech Datasets Development (subm

Appen Repos 86 Dec 07, 2022
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
Repository for Multimodal AutoML Benchmark

Benchmarking Multimodal AutoML for Tabular Data with Text Fields Repository for the NeurIPS 2021 Dataset Track Submission "Benchmarking Multimodal Aut

Xingjian Shi 44 Nov 24, 2022
Detecting Blurred Ground-based Sky/Cloud Images

Detecting Blurred Ground-based Sky/Cloud Images With the spirit of reproducible research, this repository contains all the codes required to produce t

1 Oct 20, 2021
3D cascade RCNN for object detection on point cloud

3D Cascade RCNN This is the implementation of 3D Cascade RCNN: High Quality Object Detection in Point Clouds. We designed a 3D object detection model

Qi Cai 22 Dec 02, 2022
An image classification app boilerplate to serve your deep learning models asap!

Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho

Smaranjit Ghose 27 Oct 06, 2022
PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning"

deepGCFX PyTorch implementation for our AAAI 2022 Paper "Graph-wise Common Latent Factor Extraction for Unsupervised Graph Representation Learning" Pr

Thilini Cooray 4 Aug 11, 2022
An implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019).

MixHop and N-GCN ⠀ A PyTorch implementation of "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing" (ICML 2019)

Benedek Rozemberczki 393 Dec 13, 2022
KoRean based ELECTRA pre-trained models (KR-ELECTRA) for Tensorflow and PyTorch

KoRean based ELECTRA (KR-ELECTRA) This is a release of a Korean-specific ELECTRA model with comparable or better performances developed by the Computa

12 Jun 03, 2022
Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation

SimplePose Code and pre-trained models for our paper, “Simple Pose: Rethinking and Improving a Bottom-up Approach for Multi-Person Pose Estimation”, a

Jia Li 256 Dec 24, 2022