Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

Overview

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022)

This repo is the official code for

Published on IEEE Transactions of Pattern Analysis and Machine Intelligence (TPAMI 2022). @ Beihang University.

1. Pre-request

1.1 Dependencies and Installation

1.2 Dataset

  • In this paper, we use the commonly used dataset DIV2K, COCO, and ImageNet.
  • For train or test on your own path, change the code in config.py:
    line50: TRAIN_PATH_DIV2K = ''
    line51: VAL_PATH_DIV2K = ''
    line54: VAL_PATH_COCO = ''
    line55: TEST_PATH_COCO = ''
    line57: VAL_PATH_IMAGENET = ''

2. Test

  1. Here we provide a trained model.
  2. Download and update the MODEL_PATH and the file name suffix before testing by the trained model.
    For example, if the model name is model_checkpoint_03000_1.pt, model_checkpoint_03000_2.pt, model_checkpoint_03000_3.pt,
    and its path is /home/usrname/DeepMIH/model/,
    set:
    PRETRAIN_PATH = '/home/usrname/DeepMIH/model/',
    PRETRAIN_PATH_3 = '/home/usrname/DeepMIH/model/',
    file name suffix = 'model_checkpoint_03000'.
  3. Check the dataset path is correct.
  4. Create an image path to save the generated images. Update TEST_PATH.
  5. Run test_oldversion.py.

3. Train

  1. Create a path to save the trained models and update MODEL_PATH.
  2. Check the optim parameters in config.py is correct. Make sure the sub-model(net1, net2, net3...) you want to train is correct.
  3. Run train_old_version.py. Following the Algorithm 1 to train the model.
  4. Note: DeepMIH may be hard to train. The model may suffer from explosion. Our solution is to stop the training process at a normal node and abate the learning rate. Then, continue to train the model.

4. Further explanation

In the train_old_version.py at line 223:
rev_secret_dwt_2 = rev_dwt_2.narrow(1, 4 * c.channels_in, 4 * c.channels_in) # channels = 12,
the recovered secret image_2 is obtained by spliting the middle 12 channels of the varible rev_dwt_2. However, in the forward process_2, the input is obtained by concatenating (stego, imp, secret_2) together. This means that the original code train_old_version.py has a bug on recovery process (the last 12 channels of the varible rev_dwt_2 should be splited to be the recovered secret image_2, instead of the middle 12 one). We found that in this way the network is still able to converge, thus we keep this setting in the test process.
We also offer a corrected version train.py (see line 225) and test.py. You can also train your own model in this way.

Feel free to contact: [email protected].

Citation

If you find this repository helpful, you may cite:

@ARTICLE{9676416,
  author={Guan, Zhenyu and Jing, Junpeng and Deng, Xin and Xu, Mai and Jiang, Lai and Zhang, Zhou and Li, Yipeng},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={DeepMIH: Deep Invertible Network for Multiple Image Hiding}, 
  year={2022},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TPAMI.2022.3141725}}
Owner
Junpeng Jing
Junpeng Jing
This code is an implementation for Singing TTS.

MLP Singer This code is an implementation for Singing TTS. The algorithm is based on the following papers: Tae, J., Kim, H., & Lee, Y. (2021). MLP Sin

Heejo You 22 Dec 23, 2022
Implementation of Kalman Filter in Python

Kalman Filter in Python This is a basic example of how Kalman filter works in Python. I do plan on refactoring and expanding this repo in the future.

Enoch Kan 35 Sep 11, 2022
A modern pure-Python library for reading PDF files

pdf A modern pure-Python library for reading PDF files. The goal is to have a modern interface to handle PDF files which is consistent with itself and

6 Apr 06, 2022
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
SysWhispers Shellcode Loader

Shhhloader Shhhloader is a SysWhispers Shellcode Loader that is currently a Work in Progress. It takes raw shellcode as input and compiles a C++ stub

icyguider 630 Jan 03, 2023
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

MediaPipe Kullanarak İleri Seviye Bilgisayarla Görü

Burak Bagatarhan 12 Mar 29, 2022
Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning"

Code used for the results in the paper "ClassMix: Segmentation-Based Data Augmentation for Semi-Supervised Learning" Getting started Prerequisites CUD

70 Dec 02, 2022
Learning-Augmented Dynamic Power Management

Learning-Augmented Dynamic Power Management This repository contains source code accompanying paper Learning-Augmented Dynamic Power Management with M

Adam 0 Feb 22, 2022
PyTorch implementation for COMPLETER: Incomplete Multi-view Clustering via Contrastive Prediction (CVPR 2021)

Completer: Incomplete Multi-view Clustering via Contrastive Prediction This repo contains the code and data of the following paper accepted by CVPR 20

XLearning Group 72 Dec 07, 2022
Official Pytorch implementation for video neural representation (NeRV)

NeRV: Neural Representations for Videos (NeurIPS 2021) Project Page | Paper | UVG Data Hao Chen, Bo He, Hanyu Wang, Yixuan Ren, Ser-Nam Lim, Abhinav S

hao 214 Dec 28, 2022
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
Scientific Computation Methods in C and Python (Open for Hacktoberfest 2021)

Sci - cpy README is a stub. Do expand it. Objective This repository is meant to be a ready reference for scientific computation methods. Do ⭐ it if yo

Sandip Dutta 7 Oct 12, 2022
(CVPR 2022) Pytorch implementation of "Self-supervised transformers for unsupervised object discovery using normalized cut"

(CVPR 2022) TokenCut Pytorch implementation of Tokencut: Self-supervised Transformers for Unsupervised Object Discovery using Normalized Cut Yangtao W

YANGTAO WANG 200 Jan 02, 2023
This repo is to present various code demos on how to use our Graph4NLP library.

Deep Learning on Graphs for Natural Language Processing Demo The repository contains code examples for DLG4NLP tutorials at NAACL 2021, SIGIR 2021, KD

Graph4AI 143 Dec 23, 2022
This project hosts the code for implementing the ISAL algorithm for object detection and image classification

Influence Selection for Active Learning (ISAL) This project hosts the code for implementing the ISAL algorithm for object detection and image classifi

25 Sep 11, 2022
Solver for Large-Scale Rank-One Semidefinite Relaxations

STRIDE: spectrahedral proximal gradient descent along vertices A Solver for Large-Scale Rank-One Semidefinite Relaxations About STRIDE is designed for

48 Dec 20, 2022
Pytorch implementation of Integrating Tree Path in Transformer for Code Representation

This is an official Pytorch implementation of the approaches proposed in: Han Peng, Ge Li, Wenhan Wang, Yunfei Zhao, Zhi Jin “Integrating Tree Path in

Han Peng 16 Dec 23, 2022
Image super-resolution (SR) is a fast-moving field with novel architectures attracting the spotlight

Revisiting RCAN: Improved Training for Image Super-Resolution Introduction Image super-resolution (SR) is a fast-moving field with novel architectures

Zudi Lin 76 Dec 01, 2022