Official repository of "DeepMIH: Deep Invertible Network for Multiple Image Hiding", TPAMI 2022.

Overview

DeepMIH: Deep Invertible Network for Multiple Image Hiding (TPAMI 2022)

This repo is the official code for

Published on IEEE Transactions of Pattern Analysis and Machine Intelligence (TPAMI 2022). @ Beihang University.

1. Pre-request

1.1 Dependencies and Installation

1.2 Dataset

  • In this paper, we use the commonly used dataset DIV2K, COCO, and ImageNet.
  • For train or test on your own path, change the code in config.py:
    line50: TRAIN_PATH_DIV2K = ''
    line51: VAL_PATH_DIV2K = ''
    line54: VAL_PATH_COCO = ''
    line55: TEST_PATH_COCO = ''
    line57: VAL_PATH_IMAGENET = ''

2. Test

  1. Here we provide a trained model.
  2. Download and update the MODEL_PATH and the file name suffix before testing by the trained model.
    For example, if the model name is model_checkpoint_03000_1.pt, model_checkpoint_03000_2.pt, model_checkpoint_03000_3.pt,
    and its path is /home/usrname/DeepMIH/model/,
    set:
    PRETRAIN_PATH = '/home/usrname/DeepMIH/model/',
    PRETRAIN_PATH_3 = '/home/usrname/DeepMIH/model/',
    file name suffix = 'model_checkpoint_03000'.
  3. Check the dataset path is correct.
  4. Create an image path to save the generated images. Update TEST_PATH.
  5. Run test_oldversion.py.

3. Train

  1. Create a path to save the trained models and update MODEL_PATH.
  2. Check the optim parameters in config.py is correct. Make sure the sub-model(net1, net2, net3...) you want to train is correct.
  3. Run train_old_version.py. Following the Algorithm 1 to train the model.
  4. Note: DeepMIH may be hard to train. The model may suffer from explosion. Our solution is to stop the training process at a normal node and abate the learning rate. Then, continue to train the model.

4. Further explanation

In the train_old_version.py at line 223:
rev_secret_dwt_2 = rev_dwt_2.narrow(1, 4 * c.channels_in, 4 * c.channels_in) # channels = 12,
the recovered secret image_2 is obtained by spliting the middle 12 channels of the varible rev_dwt_2. However, in the forward process_2, the input is obtained by concatenating (stego, imp, secret_2) together. This means that the original code train_old_version.py has a bug on recovery process (the last 12 channels of the varible rev_dwt_2 should be splited to be the recovered secret image_2, instead of the middle 12 one). We found that in this way the network is still able to converge, thus we keep this setting in the test process.
We also offer a corrected version train.py (see line 225) and test.py. You can also train your own model in this way.

Feel free to contact: [email protected].

Citation

If you find this repository helpful, you may cite:

@ARTICLE{9676416,
  author={Guan, Zhenyu and Jing, Junpeng and Deng, Xin and Xu, Mai and Jiang, Lai and Zhang, Zhou and Li, Yipeng},
  journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, 
  title={DeepMIH: Deep Invertible Network for Multiple Image Hiding}, 
  year={2022},
  volume={},
  number={},
  pages={1-1},
  doi={10.1109/TPAMI.2022.3141725}}
Owner
Junpeng Jing
Junpeng Jing
GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

GeneDisco is a benchmark suite for evaluating active learning algorithms for experimental design in drug discovery.

22 Dec 12, 2022
A task-agnostic vision-language architecture as a step towards General Purpose Vision

Towards General Purpose Vision Systems By Tanmay Gupta, Amita Kamath, Aniruddha Kembhavi, and Derek Hoiem Overview Welcome to the official code base f

AI2 79 Dec 23, 2022
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022
A toolkit for document-level event extraction, containing some SOTA model implementations

❤️ A Toolkit for Document-level Event Extraction with & without Triggers Hi, there 👋 . Thanks for your stay in this repo. This project aims at buildi

Tong Zhu(朱桐) 159 Dec 22, 2022
State-of-the-art data augmentation search algorithms in PyTorch

MuarAugment Description MuarAugment is a package providing the easiest way to a state-of-the-art data augmentation pipeline. How to use You can instal

43 Dec 12, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
Official Implementation (PyTorch) of "Point Cloud Augmentation with Weighted Local Transformations", ICCV 2021

PointWOLF: Point Cloud Augmentation with Weighted Local Transformations This repository is the implementation of PointWOLF(To appear). Sihyeon Kim1*,

MLV Lab (Machine Learning and Vision Lab at Korea University) 16 Nov 03, 2022
Code of the paper "Multi-Task Meta-Learning Modification with Stochastic Approximation".

Multi-Task Meta-Learning Modification with Stochastic Approximation This repository contains the code for the paper "Multi-Task Meta-Learning Modifica

Andrew 3 Jan 05, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Revisiting Temporal Alignment for Video Restoration

Revisiting Temporal Alignment for Video Restoration [arXiv] Kun Zhou, Wenbo Li, Liying Lu, Xiaoguang Han, Jiangbo Lu We provide our results at Google

52 Dec 25, 2022
Head and Neck Tumour Segmentation and Prediction of Patient Survival Project

Head-and-Neck-Tumour-Segmentation-and-Prediction-of-Patient-Survival Welcome to the Head and Neck Tumour Segmentation and Prediction of Patient Surviv

5 Oct 20, 2022
Simulation code and tutorial for BBHnet training data

Simulation Dataset for BBHnet NOTE: OLD README, UPDATE IN PROGRESS We generate simulation dataset to train BBHnet, our deep learning framework for det

0 May 31, 2022
Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Leibniz is a python package which provide facilities to express learnable partial differential equations with PyTorch

Beijing ColorfulClouds Technology Co.,Ltd. 16 Aug 07, 2022
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
Multi-Objective Reinforced Active Learning

Multi-Objective Reinforced Active Learning Dependencies wandb tqdm pytorch = 1.7.0 numpy = 1.20.0 scipy = 1.1.0 pycolab == 1.2 Weights and Biases O

Markus Peschl 6 Nov 19, 2022
This is the code for the paper "Motion-Focused Contrastive Learning of Video Representations" (ICCV'21).

Motion-Focused Contrastive Learning of Video Representations Introduction This is the code for the paper "Motion-Focused Contrastive Learning of Video

11 Sep 23, 2022
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
This is a yolo3 implemented via tensorflow 2.7

YoloV3 - an object detection algorithm implemented via TF 2.x source code In this article I assume you've already familiar with basic computer vision

2 Jan 17, 2022
The code written during my Bachelor Thesis "Classification of Human Whole-Body Motion using Hidden Markov Models".

This code was written during the course of my Bachelor thesis Classification of Human Whole-Body Motion using Hidden Markov Models. Some things might

Matthias Plappert 14 Dec 06, 2022
Image Deblurring using Generative Adversarial Networks

DeblurGAN arXiv Paper Version Pytorch implementation of the paper DeblurGAN: Blind Motion Deblurring Using Conditional Adversarial Networks. Our netwo

Orest Kupyn 2.2k Jan 01, 2023