A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

Overview

SelfGNN

A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in The International Workshop on Self-Supervised Learning for the Web (SSL'21) @ the Web Conference 2021 (WWW'21).

Note

This is an ongoing work and the repository is subjected to continuous updates.

Requirements!

  • Python 3.6+
  • PyTorch 1.6+
  • PyTorch Geometric 1.6+
  • Numpy 1.17.2+
  • Networkx 2.3+
  • SciPy 1.5.4+
  • (OPTINAL) OPTUNA 2.8.0+ If you wish to tune the hyper-parameters of SelfGNN for any dataset

Example usage

$ python src/train.py

💥 Updates

Update 3

Added a hyper-parameter tuning utility using OPTUNA.

usage:

$ python src/tune.py

Update 2

Contrary to what we've claimed in the paper, studies argue and empirically show that Batch Norm does not introduce implicit negative samples. Instead, mainly it compensate for improper initialization. We have carried out new and similar experiments, as shown in the table below, that seems to confirm this argument. (BN:Batch Norm, LN:Layer Norm, -: No Norm ). For this experiment we use a GCN encoder and split data-augmentation. Though BN does not provide implicit negative samples, the empirical evaluation shows that it leads to a better performance; putting it in the encoder is almost sufficient. LN on the other hand is not cosistent; furthemore, the model tends to prefer having BN than LN in any of the modules.

Module Dataset
Encoder Projector Predictor Photo Computer Pubmed
BN BN BN 94.05±0.23 88.83±0.17 77.76±0.57
- 94.2±0.17 88.78±0.20 75.48±0.70
- BN 94.01±0.20 88.65±0.16 78.66±0.52
- 93.9±0.18 88.82±0.16 78.53±0.47
LN LN LN 81.42±2.43 64.10±3.29 74.06±1.07
- 84.1±1.58 68.18±3.21 74.26±0.55
- LN 92.39±0.38 77.18±1.23 73.84±0.73
- 91.93±0.40 73.90±1.16 74.11±0.73
- BN BN 90.01±0.09 77.83±0.12 79.21±0.27
- 90.12±0.07 76.43±0.08 75.10±0.15
LN LN 45.34±2.47 40.56±1.48 56.29±0.77
- 52.92±3.37 40.23±1.46 60.76±0.81
- - BN 91.13±0.13 81.79±0.11 79.34±0.21
LN 50.64±2.84 47.62±2.27 64.18±1.08
- 50.35±2.73 43.68±1.80 63.91±0.92

Update 1

  • Both the paper and the source code are updated following the discussion on this issue
  • Ablation study on the impact of BatchNorm added following reviewers feedback from SSL'21
    • The findings show that SelfGNN with out batch normalization is not stable and often its performance drops significantly
    • Layer Normalization behaves similar to the finding of no BatchNorm

Possible options for training SelfGNN

The following options can be passed to src/train.py

--root: or -r: A path to a root directory to put all the datasets. Default is ./data

--name: or -n: The name of the datasets. Default is cora. Check the Supported dataset names

--model: or -m: The type of GNN architecture to use. Curently three architectres are supported (gcn, gat, sage). Default is gcn.

--aug: or -a: The name of the data augmentation technique. Curently (ppr, heat, katz, split, zscore, ldp, paste) are supported. Default is split.

--layers: or -l: One or more integer values specifying the number of units for each GNN layer. Default is 512 128

--norms: or -nm: The normalization scheme for each module. Default is batch. That is, a Batch Norm will be used in the prediction head. Specifying two inputs, e.g. --norms batch layer, allows the model to use batch norm in the GNN encoder, and layer norm in the prediction head. Finally, specifying three inputs, e.g., --norms no batch layer activates the projection head and normalization is used as: No norm for GNN encoder, Batch Norm for projection head and Layer Norm for the prediction head.

--heads: or -hd: One or more values specifying the number of heads for each GAT layer. Applicable for --model gat. Default is 8 1

--lr: or -lr: Learning rate, a value in [0, 1]. Default is 0.0001

--dropout: or -do: Dropout rate, a value in [0, 1]. Deafult is 0.2

--epochs: or -e: The number of epochs. Default is 1000.

--cache-step: or -cs: The step size for caching the model. That is, every --cache-step the model will be persisted. Default is 100.

--init-parts: or -ip: The number of initial partitions, for using the improved version using Clustering. Default is 1.

--final-parts: or -fp: The number of final partitions, for using the improved version using Clustering. Default is 1.

Supported dataset names

Name Nodes Edges Features Classes Description
Cora 2,708 5,278 1,433 7 Citation Network
Citeseer 3,327 4,552 3,703 6 Citation Network
Pubmed 19,717 44,324 500 3 Citation Network
Photo 7,487 119,043 745 8 Co-purchased products network
Computers 13,381 245,778 767 10 Co-purchased products network
CS 18,333 81,894 6,805 15 Collaboration network
Physics 34,493 247,962 8,415 5 Collaboration network

Any dataset from the PyTorch Geometric library can be used, however SelfGNN is tested only on the above datasets.

Citing

If you find this research helpful, please cite it as

@misc{kefato2021selfsupervised,
      title={Self-supervised Graph Neural Networks without explicit negative sampling}, 
      author={Zekarias T. Kefato and Sarunas Girdzijauskas},
      year={2021},
      eprint={2103.14958},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
Zekarias Tilahun
Zekarias Tilahun
FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

FairEdit Relevent Publication FairEdit: Preserving Fairness in Graph Neural Networks through Greedy Graph Editing

5 Feb 04, 2022
null

DeformingThings4D dataset Video | Paper DeformingThings4D is an synthetic dataset containing 1,972 animation sequences spanning 31 categories of human

208 Jan 03, 2023
Implementation of H-Transformer-1D, Hierarchical Attention for Sequence Learning

H-Transformer-1D Implementation of H-Transformer-1D, Transformer using hierarchical Attention for sequence learning with subquadratic costs. For now,

Phil Wang 123 Nov 17, 2022
Spectralformer: Rethinking hyperspectral image classification with transformers

The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

Danfeng Hong 104 Jan 04, 2023
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
A static analysis library for computing graph representations of Python programs suitable for use with graph neural networks.

python_graphs This package is for computing graph representations of Python programs for machine learning applications. It includes the following modu

Google Research 258 Dec 29, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Vignette is a face tracking software for characters using osu!framework.

Vignette is a face tracking software for characters using osu!framework. Unlike most solutions, Vignette is: Made with osu!framework, the game framewo

Vignette 412 Dec 28, 2022
git《Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction》(ECCV 2020) GitHub:

Learning Pairwise Inter-Plane Relations for Piecewise Planar Reconstruction Code for the ECCV 2020 paper by Yiming Qian and Yasutaka Furukawa Getting

37 Dec 04, 2022
Computing Shapley values using VAEAC

Shapley values and the VAEAC method In this GitHub repository, we present the implementation of the VAEAC approach from our paper "Using Shapley Value

3 Nov 23, 2022
This is the official Pytorch implementation of the paper "Diverse Motion Stylization for Multiple Style Domains via Spatial-Temporal Graph-Based Generative Model"

Diverse Motion Stylization (Official) This is the official Pytorch implementation of this paper. Diverse Motion Stylization for Multiple Style Domains

Soomin Park 28 Dec 16, 2022
Emotional conditioned music generation using transformer-based model.

This is the official repository of EMOPIA: A Multi-Modal Pop Piano Dataset For Emotion Recognition and Emotion-based Music Generation. The paper has b

hung anna 96 Nov 09, 2022
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".

Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim

Facebook Research 81 Dec 29, 2022
Official PyTorch implementation of U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation

U-GAT-IT — Official PyTorch Implementation : Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Imag

Hyeonwoo Kang 2.4k Jan 04, 2023
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
Finite-temperature variational Monte Carlo calculation of uniform electron gas using neural canonical transformation.

CoulombGas This code implements the neural canonical transformation approach to the thermodynamic properties of uniform electron gas. Building on JAX,

FermiFlow 9 Mar 03, 2022
Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Python implementation of NARS (Non-Axiomatic-Reasoning-System)

Bowen XU 11 Dec 20, 2022