A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling"

Overview

SelfGNN

A PyTorch implementation of "SelfGNN: Self-supervised Graph Neural Networks without explicit negative sampling" paper, which will appear in The International Workshop on Self-Supervised Learning for the Web (SSL'21) @ the Web Conference 2021 (WWW'21).

Note

This is an ongoing work and the repository is subjected to continuous updates.

Requirements!

  • Python 3.6+
  • PyTorch 1.6+
  • PyTorch Geometric 1.6+
  • Numpy 1.17.2+
  • Networkx 2.3+
  • SciPy 1.5.4+
  • (OPTINAL) OPTUNA 2.8.0+ If you wish to tune the hyper-parameters of SelfGNN for any dataset

Example usage

$ python src/train.py

💥 Updates

Update 3

Added a hyper-parameter tuning utility using OPTUNA.

usage:

$ python src/tune.py

Update 2

Contrary to what we've claimed in the paper, studies argue and empirically show that Batch Norm does not introduce implicit negative samples. Instead, mainly it compensate for improper initialization. We have carried out new and similar experiments, as shown in the table below, that seems to confirm this argument. (BN:Batch Norm, LN:Layer Norm, -: No Norm ). For this experiment we use a GCN encoder and split data-augmentation. Though BN does not provide implicit negative samples, the empirical evaluation shows that it leads to a better performance; putting it in the encoder is almost sufficient. LN on the other hand is not cosistent; furthemore, the model tends to prefer having BN than LN in any of the modules.

Module Dataset
Encoder Projector Predictor Photo Computer Pubmed
BN BN BN 94.05±0.23 88.83±0.17 77.76±0.57
- 94.2±0.17 88.78±0.20 75.48±0.70
- BN 94.01±0.20 88.65±0.16 78.66±0.52
- 93.9±0.18 88.82±0.16 78.53±0.47
LN LN LN 81.42±2.43 64.10±3.29 74.06±1.07
- 84.1±1.58 68.18±3.21 74.26±0.55
- LN 92.39±0.38 77.18±1.23 73.84±0.73
- 91.93±0.40 73.90±1.16 74.11±0.73
- BN BN 90.01±0.09 77.83±0.12 79.21±0.27
- 90.12±0.07 76.43±0.08 75.10±0.15
LN LN 45.34±2.47 40.56±1.48 56.29±0.77
- 52.92±3.37 40.23±1.46 60.76±0.81
- - BN 91.13±0.13 81.79±0.11 79.34±0.21
LN 50.64±2.84 47.62±2.27 64.18±1.08
- 50.35±2.73 43.68±1.80 63.91±0.92

Update 1

  • Both the paper and the source code are updated following the discussion on this issue
  • Ablation study on the impact of BatchNorm added following reviewers feedback from SSL'21
    • The findings show that SelfGNN with out batch normalization is not stable and often its performance drops significantly
    • Layer Normalization behaves similar to the finding of no BatchNorm

Possible options for training SelfGNN

The following options can be passed to src/train.py

--root: or -r: A path to a root directory to put all the datasets. Default is ./data

--name: or -n: The name of the datasets. Default is cora. Check the Supported dataset names

--model: or -m: The type of GNN architecture to use. Curently three architectres are supported (gcn, gat, sage). Default is gcn.

--aug: or -a: The name of the data augmentation technique. Curently (ppr, heat, katz, split, zscore, ldp, paste) are supported. Default is split.

--layers: or -l: One or more integer values specifying the number of units for each GNN layer. Default is 512 128

--norms: or -nm: The normalization scheme for each module. Default is batch. That is, a Batch Norm will be used in the prediction head. Specifying two inputs, e.g. --norms batch layer, allows the model to use batch norm in the GNN encoder, and layer norm in the prediction head. Finally, specifying three inputs, e.g., --norms no batch layer activates the projection head and normalization is used as: No norm for GNN encoder, Batch Norm for projection head and Layer Norm for the prediction head.

--heads: or -hd: One or more values specifying the number of heads for each GAT layer. Applicable for --model gat. Default is 8 1

--lr: or -lr: Learning rate, a value in [0, 1]. Default is 0.0001

--dropout: or -do: Dropout rate, a value in [0, 1]. Deafult is 0.2

--epochs: or -e: The number of epochs. Default is 1000.

--cache-step: or -cs: The step size for caching the model. That is, every --cache-step the model will be persisted. Default is 100.

--init-parts: or -ip: The number of initial partitions, for using the improved version using Clustering. Default is 1.

--final-parts: or -fp: The number of final partitions, for using the improved version using Clustering. Default is 1.

Supported dataset names

Name Nodes Edges Features Classes Description
Cora 2,708 5,278 1,433 7 Citation Network
Citeseer 3,327 4,552 3,703 6 Citation Network
Pubmed 19,717 44,324 500 3 Citation Network
Photo 7,487 119,043 745 8 Co-purchased products network
Computers 13,381 245,778 767 10 Co-purchased products network
CS 18,333 81,894 6,805 15 Collaboration network
Physics 34,493 247,962 8,415 5 Collaboration network

Any dataset from the PyTorch Geometric library can be used, however SelfGNN is tested only on the above datasets.

Citing

If you find this research helpful, please cite it as

@misc{kefato2021selfsupervised,
      title={Self-supervised Graph Neural Networks without explicit negative sampling}, 
      author={Zekarias T. Kefato and Sarunas Girdzijauskas},
      year={2021},
      eprint={2103.14958},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}
Owner
Zekarias Tilahun
Zekarias Tilahun
Efficient Sharpness-aware Minimization for Improved Training of Neural Networks

Efficient Sharpness-aware Minimization for Improved Training of Neural Networks Code for “Efficient Sharpness-aware Minimization for Improved Training

Angusdu 32 Oct 18, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Official code for UnICORNN (ICML 2021)

UnICORNN (Undamped Independent Controlled Oscillatory RNN) [ICML 2021] This repository contains the implementation to reproduce the numerical experime

Konstantin Rusch 21 Dec 22, 2022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021)

Discretized Integrated Gradients for Explaining Language Models (EMNLP 2021) Overview of paths used in DIG and IG. w is the word being attributed. The

INK Lab @ USC 17 Oct 27, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images

M2MRF: Many-to-Many Reassembly of Features for Tiny Lesion Segmentation in Fundus Images This repo is the official implementation of paper "M2MRF: Man

12 Dec 14, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
Implementation of "Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner"

Meta-rPPG: Remote Heart Rate Estimation Using a Transductive Meta-Learner This repository is the official implementation of Meta-rPPG: Remote Heart Ra

Eugene Lee 137 Dec 13, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
LBK 35 Dec 26, 2022
Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt)

Deep Learning for Natural Language Processing SS 2021 (TU Darmstadt) Task Training huge unsupervised deep neural networks yields to strong progress in

Oliver Hahn 1 Jan 26, 2022
A Transformer-Based Siamese Network for Change Detection

ChangeFormer: A Transformer-Based Siamese Network for Change Detection (Under review at IGARSS-2022) Wele Gedara Chaminda Bandara, Vishal M. Patel Her

Wele Gedara Chaminda Bandara 214 Dec 29, 2022
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023