Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Overview

Framework for abstracting Amiga debuggers.

This project provides abstration to control an Amiga remotely using a debugger.

The APIs are not yet stable.

I include an end-user ready GUI tool based on this, amigaXfer, as a preview.

amigaXfer

This is a tool for data transfer between an Amiga and another computer using the serial port. No agent required on Amiga's side, as it uses the kickstart rom's debugger to take control of the Amiga.

There's multiple ways to get into this debugger. A simple one is through Workbench's debug menu, present when wb is loaded using loadwb -debug.

Selecting the Debug, RomWack or SAD menu option in Workbench 1.x/2.x/3.x will then enter the debugger and enable amigaXfer usage.

Alternatively, it is possible to bootstrap an Amiga for which no bootable disks are available.

https://rvalles.net/bootstrapping-an-amiga-without-a-bootable-amiga-floppy.html

amigaXfer runs on multiple platforms. Windows binaries are provided in release binary builds. Python 3.8+, PySerial and wxPython are required if running from sources.

It is able to e.g. read/write/compare floppies, install bootblocks, send/receive files and dump the kickstart rom.

Highlights:

  • Uses the kickstart's serial debugger, and thus it does not require an agent.
  • Supports RomWack (AmigaOS 1.x, 2.x) and SAD (AmigaOS 3.x) builtin debuggers.
  • High speed transfers; 512kbps possible on basic 68000 @ 7MHz A500.
  • Can be used to bootstrap an Amiga for which no bootable disks are available.
  • Checksums (CRC32/ISO-HDLC) used throughout to ensure transfer integrity.
You might also like...
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!
A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A tutorial showing how to train, convert, and run TensorFlow Lite object detection models on Android devices, the Raspberry Pi, and more!

A DNN inference latency prediction toolkit for accurately modeling and predicting the latency on diverse edge devices.

Note: This is an alpha (preview) version which is still under refining. nn-Meter is a novel and efficient system to accurately predict the inference l

PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.
CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices.

CenterFace Introduce CenterFace(size of 7.3MB) is a practical anchor-free face detection and alignment method for edge devices. Recent Update 2019.09.

High performance Cross-platform Inference-engine, you could run Anakin on x86-cpu,arm, nv-gpu, amd-gpu,bitmain and cambricon devices.

Anakin2.0 Welcome to the Anakin GitHub. Anakin is a cross-platform, high-performance inference engine, which is originally developed by Baidu engineer

CondenseNet: Light weighted CNN for mobile devices
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle
Monitor your ML jobs on mobile devices📱, especially for Google Colab / Kaggle

TF Watcher TF Watcher is a simple to use Python package and web app which allows you to monitor 👀 your Machine Learning training or testing process o

Comments
  • Crash with AmigaOS 3.2 / 68060 / Fastmem (I-cache)

    Crash with AmigaOS 3.2 / 68060 / Fastmem (I-cache)

    I'm very impressed with this project. Really marvellous and nicely laid out code.

    I am however seeing a crash when starting this on OS 3.2. I'm not sure if its OS3.2, MMULib or my accelerator card that might be causing the issue. The crash happens randomly transferring and running the snippets.

    OS3.2 has romwack.

    My hardware setup is a full 68060 with MMULib and 128Mb of SDRAM.

    Interestingly I can manually create a script and run AllocMem over and over but no issues. I'm happy to help dig into the whys but some hints might be useful.

    My end goal is to simply have a cross development environment with a serial cable.

    opened by terriblefire 23
Releases(1.1.2)
  • 1.1.2(Aug 21, 2022)

    amigaXfer, an easy-to-use GUI tool for lightning fast disk/file transfers on the serial port with the Amiga.

    Binaries should work on Windows 7 or higher, 32bit or 64bit. Any Amiga that has a Serial Port is supported; Kickstart 34/37/39/40/45/46/47 tested.

    Read the README.txt in the archive for multiple methods of entry to the Amiga ROM debugger.

    If doing the floppyless bootstrap process, as a free and open source alternative to Workbench disks, Nico Bendlin's HelloAmi will boot all the way up to Workbench. He kindly enabled the Workbench's debug menu on my request, which involved some research work on his end.

    Changes

    • SetupDialog
      • Open serial in exclusive mode if possible.
      • Support for interrupting the DEL-sending CrashEntry routine.
    • BootblockTool
      • Remove stale code from debug/optdebug bootblocks.
      • New "noboot" bootblock: Amiga won't boot it. DOS can still access.
    • RomTool
      • Fix: Progressbar progress display was not accurate.
    • Fix: Clear icache on code upload (020+). (Thanks to TerribleFire, issue #1)
    • Improved log output.

    For other systems, use source code. The dependencies are python 3.8+, pyserial and wxpython. For the 68000 code, it is possible to just copy the built objects from the Windows archive. Else, vasm or phxass will build them. A makefile is provided.

    Note that this version has changed the assembly files. Re-copy or rebuild.

    Source code(tar.gz)
    Source code(zip)
    amigaXfer_1.1.2_win32.zip(11.72 MB)
  • 1.1.1(Jul 8, 2021)

    amigaXfer, an easy-to-use GUI tool for lightning fast disk/file transfers on the serial port with the Amiga.

    Binaries should work on Windows 7 or higher, 32bit or 64bit. Any Amiga that has a Serial Port is supported; Kickstart 34/37/39/40/45/46/47 tested.

    Read the README.txt in the archive for multiple methods of entry to the Amiga ROM debugger.

    If doing the floppyless bootstrap process, as a free and open source alternative to Workbench disks, Nico Bendlin's HelloAmi will boot all the way up to Workbench. He kindly enabled the Workbench's debug menu on my request, which involved some research work on his end.

    Changes

    • SetupDialog
      • Detect missing m68k objects.
      • Better UX on connection issues.
    • Bootblock Tool
      • New bootblocks:
        • exitstrap is a hack to actually exit strap's init routine.
        • warmdos is exitstrap + start dos via WarmCapture(). A curiosity.
    • DOS Tool (preview)
      • BUGFIX: Fixed crash with AmigaOS 2.x and setpatch.
      • File transfers can now be interrupted.
    • Improved log output.

    Thanks to Ralf Hoffmann for AmigaOS 2.x issue report and testing fix and Daniel Doran for pre-release testing.

    For other systems, use source code. The dependencies are python 3.8+, pyserial and wxpython. For the 68000 code, it is possible to just copy the built objects from the Windows archive. Else, vasm or phxass will build them.

    Note that the assembler files have changed. Current objects are needed for the new library function calling mechanism (related to the fix for the setpatch issue with AmigaOS 2 mentioned above). Re-copy or rebuild.

    CAREFUL THAT NEWER VERSIONS ARE AVAILABLE. Anyone linking here: Please link the releases page instead of a specific release.

    Source code(tar.gz)
    Source code(zip)
    amigaXfer_1.1.1_win32.zip(11.72 MB)
  • 1.1.0(May 18, 2021)

    amigaXfer, an easy-to-use GUI tool for lightning fast disk/file transfers on the serial port with the Amiga.

    Binaries should work on Windows 7 or higher, 32bit or 64bit. Any Amiga that has a Serial Port is supported; Kickstart 34/37/39/40/45/46 tested.

    Read the README.txt in the archive for multiple methods of entry to the Amiga ROM debugger.

    If doing the floppyless bootstrap process, as a free and open source alternative to Workbench disks, Nico Bendlin's HelloAmi will boot all the way up to Workbench. He kindly enabled the Workbench's debug menu on my request, which involved some research work on his end.

    Changes

    • SetupDialog
      • ResetFirst will reboot machine during connection.
        • Writing floppies is slightly faster in this environment, due to less tasks running.
        • DosTool not usable in this environment due to dos.library being not yet initialized.
        • Allows entry via non-critical guru right click.
    • FloppyTool
      • BUGFIX: Fixed tool not working at all and instead spitting FCh ioerr on some machines.
        • Thanks to Michael Kagerbauer for reporting issue and testing fix.
      • Disk2ADF will now retry reads 5 times before giving up.
      • More user friendly IO error reporting.
      • Thanks to Michael Kagerbauer for feedback on old IOERR reporting.
    • BootblockTool
      • Better error reporting.
    • BUGFIX: Fixed issue in workaround for WRITE_BYTE SAD bug (kick v39).
    • Workaround introduced for SAD reboot function ACK bug.
      • SAD doesn't check TSRE after writing ACK to SERDAT; reboot will interrupt ACK on a fast CPU.
      • Don't bother waiting for ACK.
    • Floppyless Bootstrap should now work on all kickstarts.
      • Tested on kickstart 34/37/39/40/45/46.
    • Size SetupDialog/RomTool windows to contents.
      • Thanks to Alexander Fritsch for feedback/screenshots on window sizing issues with some win7 themes.
    • Cleaned up tool startup/cleanup procedures for all tools.

    For other systems, use source code. The dependencies are python 3.8+, pyserial and wxpython. For the 68000 code, it is possible to just copy the built objects from the Windows archive. Else, vasm or phxass will build them.

    Note that the assembler files have changed. Current objects are needed for the floppyXfer server bugfix. Re-copy or rebuild.

    CAREFUL THAT NEWER VERSIONS ARE AVAILABLE. Anyone linking here: Please link the releases page instead of a specific release.

    Source code(tar.gz)
    Source code(zip)
    amigaXfer_1.1.0_win32.zip(11.61 MB)
  • 1.0.1(Apr 2, 2021)

    amigaXfer, an easy-to-use GUI tool for lightning fast disk/file transfers on the serial port with the Amiga.

    Binaries should work on Windows 7 32bit or higher. Any Amiga that has a Serial Port is supported; Kickstart 34/37/39/40/45 tested.

    Read the README.txt in the archive for multiple methods of entry to the Amiga ROM debugger.

    Changes

    • RomTool
      • Initialization GUI work outside GUI thread issue fixed.
      • Kickstart detection logic is now slightly more clever.
      • Can now be interrupted mid-dumping.
      • Larger transfer blocks, faster dumping.
      • Timer added.
      • Debug text output added.
    • DosTool
      • Target directory can safely contain a trailing slash.
      • Buffer size scales with free RAM, up to 256KB. Faster.
      • Timer added.
    • FloppyTool
      • Progressbar added.
    • UI improvements.
    • Documentation improvements.

    For other systems, use source code. The dependencies are python 3.8+, pyserial and wxpython. For the 68000 code, it is possible to just copy the built objects from the Windows archive. Else, vasm or phxass will build them.

    Note: Reissued win32 zip, due to an issue unpacking it with win7. It does not appear to like advcomp'd zips.

    CAREFUL THAT NEWER VERSIONS ARE AVAILABLE. Anyone linking here: Please link the releases page instead of a specific release.

    Source code(tar.gz)
    Source code(zip)
    amigaXfer_1.0.1-newzip_win32.zip(11.81 MB)
  • 1.0.0(Mar 25, 2021)

    First release of amigaXfer, an easy-to-use GUI tool for lightning fast disk/file transfers on the serial port.

    Binaries should work on Windows 7 32bit or higher.

    Read the README.txt in the archive for multiple methods of entry to the Amiga ROM debugger.

    For other systems, use source code. The dependencies are python 3.8+, pyserial and wxpython. For the 68000 code, it is possible to just copy the built blobs from the Windows archive. Else, vasm or phxass will build them.

    CAREFUL THAT NEWER VERSIONS ARE AVAILABLE. Anyone linking here: Please link the releases page instead of a specific release.

    Source code(tar.gz)
    Source code(zip)
    amigaXfer_1.0.0_win32.zip(11.91 MB)
Owner
Roc Vallès
Roc Vallès
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
Pytorch implementation of Decoupled Spatial-Temporal Transformer for Video Inpainting

Decoupled Spatial-Temporal Transformer for Video Inpainting By Rui Liu, Hanming Deng, Yangyi Huang, Xiaoyu Shi, Lewei Lu, Wenxiu Sun, Xiaogang Wang, J

51 Dec 13, 2022
CTF challenges and write-ups for MicroCTF 2021.

MicroCTF 2021 Qualifications About This repository contains CTF challenges and official write-ups for MicroCTF 2021 Qualifications. License Distribute

Shellmates 12 Dec 27, 2022
Exploiting a Zoo of Checkpoints for Unseen Tasks

Exploiting a Zoo of Checkpoints for Unseen Tasks This repo includes code to reproduce all results in the above Neurips paper, authored by Jiaji Huang,

Baidu Research 8 Sep 06, 2022
A Pytree Module system for Deep Learning in JAX

Treex A Pytree-based Module system for Deep Learning in JAX Intuitive: Modules are simple Python objects that respect Object-Oriented semantics and sh

Cristian Garcia 216 Dec 20, 2022
Local Attention - Flax module for Jax

Local Attention - Flax Autoregressive Local Attention - Flax module for Jax Install $ pip install local-attention-flax Usage from jax import random fr

Phil Wang 16 Jun 16, 2022
ISBI 2022: Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image.

Cross-level Contrastive Learning and Consistency Constraint for Semi-supervised Medical Image Introduction This repository contains the PyTorch implem

25 Nov 09, 2022
Latex code for making neural networks diagrams

PlotNeuralNet Latex code for drawing neural networks for reports and presentation. Have a look into examples to see how they are made. Additionally, l

Haris Iqbal 18.6k Jan 01, 2023
This is a repository of our model for weakly-supervised video dense anticipation.

Introduction This is a repository of our model for weakly-supervised video dense anticipation. More results on GTEA, Epic-Kitchens etc. will come soon

2 Apr 09, 2022
Learning and Building Convolutional Neural Networks using PyTorch

Image Classification Using Deep Learning Learning and Building Convolutional Neural Networks using PyTorch. Models, selected are based on number of ci

Mayur 126 Dec 22, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
[CVPR 2022] PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision (Oral)

PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and Hallucination under Self-supervision Kehong Gong*, Bingbing Li*, Jianfeng Zhang*, Ta

256 Dec 28, 2022
The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformers Improves Systematic Generalization".

Codebase for learning control flow in transformers The official repository for our paper "The Neural Data Router: Adaptive Control Flow in Transformer

Csordás Róbert 24 Oct 15, 2022
Learning the Beauty in Songs: Neural Singing Voice Beautifier; ACL 2022 (Main conference); Official code

Learning the Beauty in Songs: Neural Singing Voice Beautifier Jinglin Liu, Chengxi Li, Yi Ren, Zhiying Zhu, Zhou Zhao Zhejiang University ACL 2022 Mai

Jinglin Liu 257 Dec 30, 2022
Source Code for ICSE 2022 Paper - ``Can We Achieve Fairness Using Semi-Supervised Learning?''

Fair-SSL Source Code for ICSE 2022 Paper - Can We Achieve Fairness Using Semi-Supervised Learning? Ethical bias in machine learning models has become

1 Dec 18, 2021
DI-smartcross - Decision Intelligence Platform for Traffic Crossing Signal Control

DI-smartcross DI-smartcross - Decision Intelligence Platform for Traffic Crossin

OpenDILab 213 Jan 02, 2023
Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022)

Group R-CNN for Point-based Weakly Semi-supervised Object Detection (CVPR2022) By Shilong Zhang*, Zhuoran Yu*, Liyang Liu*, Xinjiang Wang, Aojun Zhou,

Shilong Zhang 129 Dec 24, 2022
This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Learning-to-See-in-the-Dark This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vl

5.3k Jan 01, 2023
[NeurIPS2021] Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks

Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks Code for NeurIPS 2021 Paper "Exploring Architectural Ingredients of A

Hanxun Huang 26 Dec 01, 2022