Official Repository for the paper "Improving Baselines in the Wild".

Related tags

Deep Learningwilds
Overview

iWildCam and FMoW baselines (WILDS)

This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed)

For general instructions, please refer to the original repositiory.

This repository contains code used to produce experimental results presented in:

Improving Baselines in the Wild

Apart from minor edits, the only main changes we introduce are:

  • --validate_every flag (default: 1000) to specify the frequency (number of training steps) of cross-validation/checkpoint tracking.
  • sub_val_metric option in the dataset (see examples/configs/datasets.py) to specify a secondary metric to be tracked during training. This activates additional cross-validation and checkpoint tracking for the specified metric.

Results

NB: To reproduce the numbers from the paper, the right PyTorch version must be used. All our experiments have been conducted using 1.9.0+cu102, except for + higher lr rows in Table 2/FMoW (which we ran for the camera-ready and for the public release) for which 1.10.0+cu102 was used.

The training scripts, logs, and model checkpoints for the best configurations from our experiments can be found here for iWildCam & FMoW.

iWildCam

CV based on "Valid F1"

Split / Metric mean (std) 3 runs
IID Valid Acc 82.5 (0.8) [0.817, 0.835, 0.822]
IID Valid F1 46.7 (1.0) [0.456, 0.481, 0.464]
IID Test Acc 76.2 (0.1) [0.762, 0.763, 0.761]
IID Test F1 47.9 (2.1) [0.505, 0.479, 0.453]
Valid Acc 64.1 (1.7) [0.644, 0.619, 0.661]
Valid F1 38.3 (0.9) [0.39, 0.371, 0.389]
Test Acc 69.0 (0.3) [0.69, 0.694, 0.687]
Test F1 32.1 (1.2) [0.338, 0.31, 0.314]

CV based on "Valid Acc"

Split / Metric mean (std) 3 runs
IID Valid Acc 82.6 (0.7) [0.836, 0.821, 0.822]
IID Valid F1 46.2 (0.9) [0.472, 0.45, 0.464]
IID Test Acc 75.8 (0.4) [0.76, 0.753, 0.761]
IID Test F1 44.9 (0.4) [0.444, 0.45, 0.453]
Valid Acc 66.6 (0.4) [0.666, 0.672, 0.661]
Valid F1 36.6 (2.1) [0.369, 0.339, 0.389]
Test Acc 68.6 (0.3) [0.688, 0.682, 0.687]
Test F1 28.7 (2.0) [0.279, 0.268, 0.314]

FMoW

CV based on "Valid Region"

Split / Metric mean (std) 3 runs
IID Valid Acc 63.9 (0.2) [0.64, 0.636, 0.641]
IID Valid Region 62.2 (0.5) [0.623, 0.616, 0.628]
IID Valid Year 49.8 (1.8) [0.52, 0.475, 0.5]
IID Test Acc 62.3 (0.2) [0.626, 0.621, 0.621]
IID Test Region 60.9 (0.6) [0.617, 0.603, 0.606]
IID Test Year 43.2 (1.1) [0.438, 0.417, 0.442]
Valid Acc 62.1 (0.0) [0.62, 0.621, 0.621]
Valid Region 52.5 (1.0) [0.538, 0.513, 0.524]
Valid Year 60.5 (0.2) [0.602, 0.605, 0.608]
Test Acc 55.6 (0.2) [0.555, 0.554, 0.558]
Test Region 34.8 (1.5) [0.369, 0.334, 0.34]
Test Year 50.2 (0.4) [0.499, 0.498, 0.508]

CV based on "Valid Acc"

Split / Metric mean (std) 3 runs
IID Valid Acc 64.0 (0.1) [0.641, 0.639, 0.641]
IID Valid Region 62.3 (0.4) [0.623, 0.617, 0.628]
IID Valid Year 50.8 (0.6) [0.514, 0.509, 0.5]
IID Test Acc 62.3 (0.4) [0.628, 0.62, 0.621]
IID Test Region 61.1 (0.6) [0.62, 0.608, 0.606]
IID Test Year 43.6 (1.4) [0.45, 0.417, 0.442]
Valid Acc 62.1 (0.0) [0.621, 0.621, 0.621]
Valid Region 51.4 (1.3) [0.522, 0.496, 0.524]
Valid Year 60.6 (0.3) [0.608, 0.601, 0.608]
Test Acc 55.6 (0.2) [0.556, 0.554, 0.558]
Test Region 34.2 (1.2) [0.357, 0.329, 0.34]
Test Year 50.2 (0.5) [0.496, 0.501, 0.508]

BibTex

@inproceedings{irie2021improving,
      title={Improving Baselines in the Wild}, 
      author={Kazuki Irie and Imanol Schlag and R\'obert Csord\'as and J\"urgen Schmidhuber},
      booktitle={Workshop on Distribution Shifts, NeurIPS},
      address={Virtual only},
      year={2021}
}
Owner
Kazuki Irie
Kazuki Irie
Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Free Book about Deep-Learning approaches for Chess (like AlphaZero, Leela Chess Zero and Stockfish NNUE)

Dominik Klein 189 Dec 21, 2022
DECAF: Deep Extreme Classification with Label Features

DECAF DECAF: Deep Extreme Classification with Label Features @InProceedings{Mittal21, author = "Mittal, A. and Dahiya, K. and Agrawal, S. and Sain

46 Nov 06, 2022
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196

img_sussifier A python script to convert images to animated sus among us crewmate twerk jifs as seen on r/196 Examples How to use install python pip i

41 Sep 30, 2022
A collection of awesome resources image-to-image translation.

awesome image-to-image translation A collection of resources on image-to-image translation. Contributing If you think I have missed out on something (

876 Dec 28, 2022
Attempt at implementation of a simple GAN using Keras

Simple GAN This is my attempt to make a wrapper class for a GAN in keras which can be used to abstract the whole architecture process. Simple GAN Over

Deven96 7 May 23, 2019
Contains a bunch of different python programm tasks

py_tasks Contains a bunch of different python programm tasks Armstrong.py - calculate Armsrong numbers in range from 0 to n with / without cache and c

Dmitry Chmerenko 1 Dec 17, 2021
(CVPR 2022 - oral) Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry

Multi-View Depth Estimation by Fusing Single-View Depth Probability with Multi-View Geometry Official implementation of the paper Multi-View Depth Est

Bae, Gwangbin 138 Dec 28, 2022
내가 보려고 정리한 <프로그래밍 기초 Ⅰ> / organized for me

Programming-Basics 프로그래밍 기초 Ⅰ 아카이브 Do it! 점프 투 파이썬 주차 강의주제 비고 1주차 Syllabus 2주차 자료형 - 숫자형 3주차 자료형 - 문자열형 4주차 입력과 출력 5주차 제어문 - 조건문 if 6주차 제어문 - 반복문 whil

KIMMINSEO 1 Mar 07, 2022
The code of NeurIPS 2021 paper "Scalable Rule-Based Representation Learning for Interpretable Classification".

Rule-based Representation Learner This is a PyTorch implementation of Rule-based Representation Learner (RRL) as described in NeurIPS 2021 paper: Scal

Zhuo Wang 53 Dec 17, 2022
Pytorch implementation of ICASSP 2022 paper Attention Probe: Vision Transformer Distillation in the Wild

Attention Probe: Vision Transformer Distillation in the Wild Jiahao Wang, Mingdeng Cao, Shuwei Shi, Baoyuan Wu, Yujiu Yang In ICASSP 2022 This code is

IIGROUP 6 Sep 21, 2022
Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available for research purposes.

Data and Code for paper Outlining and Filling: Hierarchical Query Graph Generation for Answering Complex Questions over Knowledge Graph is available f

Yongrui Chen 5 Nov 10, 2022
Repository of best practices for deep learning in Julia, inspired by fastai

FastAI Docs: Stable | Dev FastAI.jl is inspired by fastai, and is a repository of best practices for deep learning in Julia. Its goal is to easily ena

FluxML 532 Jan 02, 2023
PyTorch implementation of "Continual Learning with Deep Generative Replay", NIPS 2017

pytorch-deep-generative-replay PyTorch implementation of Continual Learning with Deep Generative Replay, NIPS 2017 Results Continual Learning on Permu

Junsoo Ha 127 Dec 14, 2022
CSD: Consistency-based Semi-supervised learning for object Detection

CSD: Consistency-based Semi-supervised learning for object Detection (NeurIPS 2019) By Jisoo Jeong, Seungeui Lee, Jee-soo Kim, Nojun Kwak Installation

80 Dec 15, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
ElasticFace: Elastic Margin Loss for Deep Face Recognition

This is the official repository of the paper: ElasticFace: Elastic Margin Loss for Deep Face Recognition Paper on arxiv: arxiv Model Log file Pretrain

Fadi Boutros 113 Dec 14, 2022
🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

🎓Automatically Update CV Papers Daily using Github Actions (Update at 12:00 UTC Every Day)

Realcat 270 Jan 07, 2023
Vision-and-Language Navigation in Continuous Environments using Habitat

Vision-and-Language Navigation in Continuous Environments (VLN-CE) Project Website — VLN-CE Challenge — RxR-Habitat Challenge Official implementations

Jacob Krantz 132 Jan 02, 2023
Rule Based Classification Project

Kural Tabanlı Sınıflandırma ile Potansiyel Müşteri Getirisi Hesaplama İş Problemi: Bir oyun şirketi müşterilerinin bazı özelliklerini kullanaraknseviy

Şafak 1 Jan 12, 2022