Official Repository for the paper "Improving Baselines in the Wild".

Related tags

Deep Learningwilds
Overview

iWildCam and FMoW baselines (WILDS)

This repository was originally forked from the official repository of WILDS datasets (commit 7e103ed)

For general instructions, please refer to the original repositiory.

This repository contains code used to produce experimental results presented in:

Improving Baselines in the Wild

Apart from minor edits, the only main changes we introduce are:

  • --validate_every flag (default: 1000) to specify the frequency (number of training steps) of cross-validation/checkpoint tracking.
  • sub_val_metric option in the dataset (see examples/configs/datasets.py) to specify a secondary metric to be tracked during training. This activates additional cross-validation and checkpoint tracking for the specified metric.

Results

NB: To reproduce the numbers from the paper, the right PyTorch version must be used. All our experiments have been conducted using 1.9.0+cu102, except for + higher lr rows in Table 2/FMoW (which we ran for the camera-ready and for the public release) for which 1.10.0+cu102 was used.

The training scripts, logs, and model checkpoints for the best configurations from our experiments can be found here for iWildCam & FMoW.

iWildCam

CV based on "Valid F1"

Split / Metric mean (std) 3 runs
IID Valid Acc 82.5 (0.8) [0.817, 0.835, 0.822]
IID Valid F1 46.7 (1.0) [0.456, 0.481, 0.464]
IID Test Acc 76.2 (0.1) [0.762, 0.763, 0.761]
IID Test F1 47.9 (2.1) [0.505, 0.479, 0.453]
Valid Acc 64.1 (1.7) [0.644, 0.619, 0.661]
Valid F1 38.3 (0.9) [0.39, 0.371, 0.389]
Test Acc 69.0 (0.3) [0.69, 0.694, 0.687]
Test F1 32.1 (1.2) [0.338, 0.31, 0.314]

CV based on "Valid Acc"

Split / Metric mean (std) 3 runs
IID Valid Acc 82.6 (0.7) [0.836, 0.821, 0.822]
IID Valid F1 46.2 (0.9) [0.472, 0.45, 0.464]
IID Test Acc 75.8 (0.4) [0.76, 0.753, 0.761]
IID Test F1 44.9 (0.4) [0.444, 0.45, 0.453]
Valid Acc 66.6 (0.4) [0.666, 0.672, 0.661]
Valid F1 36.6 (2.1) [0.369, 0.339, 0.389]
Test Acc 68.6 (0.3) [0.688, 0.682, 0.687]
Test F1 28.7 (2.0) [0.279, 0.268, 0.314]

FMoW

CV based on "Valid Region"

Split / Metric mean (std) 3 runs
IID Valid Acc 63.9 (0.2) [0.64, 0.636, 0.641]
IID Valid Region 62.2 (0.5) [0.623, 0.616, 0.628]
IID Valid Year 49.8 (1.8) [0.52, 0.475, 0.5]
IID Test Acc 62.3 (0.2) [0.626, 0.621, 0.621]
IID Test Region 60.9 (0.6) [0.617, 0.603, 0.606]
IID Test Year 43.2 (1.1) [0.438, 0.417, 0.442]
Valid Acc 62.1 (0.0) [0.62, 0.621, 0.621]
Valid Region 52.5 (1.0) [0.538, 0.513, 0.524]
Valid Year 60.5 (0.2) [0.602, 0.605, 0.608]
Test Acc 55.6 (0.2) [0.555, 0.554, 0.558]
Test Region 34.8 (1.5) [0.369, 0.334, 0.34]
Test Year 50.2 (0.4) [0.499, 0.498, 0.508]

CV based on "Valid Acc"

Split / Metric mean (std) 3 runs
IID Valid Acc 64.0 (0.1) [0.641, 0.639, 0.641]
IID Valid Region 62.3 (0.4) [0.623, 0.617, 0.628]
IID Valid Year 50.8 (0.6) [0.514, 0.509, 0.5]
IID Test Acc 62.3 (0.4) [0.628, 0.62, 0.621]
IID Test Region 61.1 (0.6) [0.62, 0.608, 0.606]
IID Test Year 43.6 (1.4) [0.45, 0.417, 0.442]
Valid Acc 62.1 (0.0) [0.621, 0.621, 0.621]
Valid Region 51.4 (1.3) [0.522, 0.496, 0.524]
Valid Year 60.6 (0.3) [0.608, 0.601, 0.608]
Test Acc 55.6 (0.2) [0.556, 0.554, 0.558]
Test Region 34.2 (1.2) [0.357, 0.329, 0.34]
Test Year 50.2 (0.5) [0.496, 0.501, 0.508]

BibTex

@inproceedings{irie2021improving,
      title={Improving Baselines in the Wild}, 
      author={Kazuki Irie and Imanol Schlag and R\'obert Csord\'as and J\"urgen Schmidhuber},
      booktitle={Workshop on Distribution Shifts, NeurIPS},
      address={Virtual only},
      year={2021}
}
Owner
Kazuki Irie
Kazuki Irie
Quasi-Dense Similarity Learning for Multiple Object Tracking, CVPR 2021 (Oral)

Quasi-Dense Tracking This is the offical implementation of paper Quasi-Dense Similarity Learning for Multiple Object Tracking. We present a trailer th

ETH VIS Research Group 327 Dec 27, 2022
YOLOv5🚀 reproduction by Guo Quanhao using PaddlePaddle

YOLOv5-Paddle YOLOv5 🚀 reproduction by Guo Quanhao using PaddlePaddle 支持AutoBatch 支持AutoAnchor 支持GPU Memory 快速开始 使用AIStudio高性能环境快速构建YOLOv5训练(PaddlePa

QuanHao Guo 20 Nov 14, 2022
Codes to calculate solar-sensor zenith and azimuth angles directly from hyperspectral images collected by UAV. Works only for UAVs that have high resolution GNSS/IMU unit.

UAV Solar-Sensor Angle Calculation Table of Contents About The Project Built With Getting Started Prerequisites Installation Datasets Contributing Lic

Sourav Bhadra 1 Jan 15, 2022
Generate images from texts. In Russian. In PaddlePaddle

ruDALL-E PaddlePaddle ruDALL-E in PaddlePaddle. Install: pip install rudalle_paddle==0.0.1rc1 Run with free v100 on AI Studio. Original Pytorch versi

AgentMaker 20 Oct 18, 2022
pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

pybaum provides tools to work with pytrees which is a concept burrowed from JAX.

Open Source Economics 9 May 11, 2022
ONNX Runtime: cross-platform, high performance ML inferencing and training accelerator

ONNX Runtime is a cross-platform inference and training machine-learning accelerator. ONNX Runtime inference can enable faster customer experiences an

Microsoft 8k Jan 04, 2023
Official implementation of the paper "Topographic VAEs learn Equivariant Capsules"

Topographic Variational Autoencoder Paper: https://arxiv.org/abs/2109.01394 Getting Started Install requirements with Anaconda: conda env create -f en

T. Andy Keller 69 Dec 12, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 03, 2023
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
C3d-pytorch - Pytorch porting of C3D network, with Sports1M weights

C3D for pytorch This is a pytorch porting of the network presented in the paper Learning Spatiotemporal Features with 3D Convolutional Networks How to

Davide Abati 311 Jan 06, 2023
A python code to convert Keras pre-trained weights to Pytorch version

Weights_Keras_2_Pytorch 最近想在Pytorch项目里使用一下谷歌的NIMA,但是发现没有预训练好的pytorch权重,于是整理了一下将Keras预训练权重转为Pytorch的代码,目前是支持Keras的Conv2D, Dense, DepthwiseConv2D, Batch

Liu Hengyu 2 Dec 16, 2021
Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021)

RSCD (BS-RSCD & JCD) Towards Rolling Shutter Correction and Deblurring in Dynamic Scenes (CVPR2021) by Zhihang Zhong, Yinqiang Zheng, Imari Sato We co

81 Dec 15, 2022
A deep learning network built with TensorFlow and Keras to classify gender and estimate age.

Convolutional Neural Network (CNN). This repository contains a source code of a deep learning network built with TensorFlow and Keras to classify gend

Pawel Dziemiach 1 Dec 19, 2021
A large-scale video dataset for the training and evaluation of 3D human pose estimation models

ASPset-510 (Australian Sports Pose Dataset) is a large-scale video dataset for the training and evaluation of 3D human pose estimation models. It contains 17 different amateur subjects performing 30

Aiden Nibali 25 Jun 20, 2021
Keras Implementation of Neural Style Transfer from the paper "A Neural Algorithm of Artistic Style"

Neural Style Transfer & Neural Doodles Implementation of Neural Style Transfer from the paper A Neural Algorithm of Artistic Style in Keras 2.0+ INetw

Somshubra Majumdar 2.2k Dec 31, 2022
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

浅梦 6.6k Jan 08, 2023
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022