This tutorial repository is to introduce the functionality of KGTK to first-time users

Overview

Welcome to the KGTK notebook tutorial

The goal of this tutorial repository is to introduce the functionality of KGTK to first-time users. The Knowledge Graph Toolkit (KGTK) is a comprehensive framework for the creation and exploitation of large hyper-relational knowledge graphs (KGs), designed for ease of use, scalability, and speed. The tutorial consists of several notebooks that demonstrate how to perform network analysis, graph profiling, knowledge enrichment, and embedding computation over a portion of the Wikidata knowledge graph. The tutorial notebooks can be found in the tutorial folder. All notebooks require minimum configuration and can be run locally or in Google Colab in a matter of a few minutes. The input data for the notebooks is stored in the datasets folder. Basic understanding of knowledge graphs is sufficient for this tutorial.

This repository has been created for the purpose of the KGTK tutorial presented at ISWC 2021. For more information on this tutorial, see our website.

Notebooks

  1. 01-kgtk-introduction.ipynb introduction to kgtk and kypher.
  2. 02-kg-profiling.ipynb performs profiling of a Wikidata subgraph, by computing deep statistics of its classes, instances, and properties.
  3. 03-kg-graph-embeddings.ipynb computes graph embeddings of a Wikidata subgraph using kgtk, demonstrates how to use these embeddings for similarity estimation, and visualizes them.
  4. 04-kg-enrichment-with-csv.ipynb shows how structured data from IMDb can be integrated into a subset of Wikidata.
  5. 05-kg-enrichment-with-lod.ipynb shows how LOD graphs like Getty Vocabulary can be used to enrich Wikidata by using kgtk operations.
  6. 06-kg-network-analysis.ipynb analyzes the family network of Arnold Schwarzenegger (Q2685) in Wikidata by using KGTK operations.
  7. 07-kg-constraint-validation.ipynb demonstrates how to do constraint validation on one wikidata property.

Running the notebooks in Google Colab

List of steps required to be able to run the ISI Google colab Notebooks.

Make a copy of the notebooks to your Google Drive.

The following tutorial notebooks are available to run in Google Colab

  1. 01-kgtk-introduction.ipynb
  2. 02-kg-profiling.ipynb
  3. 03-kg-graph-embeddings.ipynb
  4. 04-kg-enrichment-with-csv.ipynb
  5. 05-kg-enrichment-with-lod.ipynb
  6. 06-kg-network-analysis.ipynb
  7. 07-kg-constraint-validation.ipynb
  8. kgtk-browser.ipynb (experimental)

Click on a link, it'll take you to the Google Colab notebook. These are readonly notebook links.

Click on Save a copy in Drive from the File menu as shown.

Save a Copy

This will create a copy of the notebook in your Google Drive.

Install kgtk

Run the first cell to install kgtk.

If you see this warning,

Author

click on Run anyway to continue

You'll see an error after the install finishes,

Restart Runtime

This is because of a conflict in Google Colab's python environment. You have to click on the Restart Runtime button.

You do not have to install kgtk again.

In some notebooks, there are a few more installation cells, in case you see the same error as above, please click on Restart Runtime

Run the cells in the notebook

Now, simply run all the cells. The notebook should run successfully.

Google Colab Caveats

  • The colab VM and python environment is ephemeral. The VM will reset after a while, all the installed libraries and files produced will be lost.
  • Google Colab File IO. Download / Upload files to Google Colab
  • You can connect a google drive to the colab notebook to read from and save to.
  • Users can run the same colab notebook by sharing it with a link. This can have unwanted complications in case multiple people run the same cell at the same time.

Contact

Owner
USC ISI I2
USC ISI I2
Project page of the paper 'Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network' (ECCVW 2018)

EPSR (Enhanced Perceptual Super-resolution Network) paper This repo provides the test code, pretrained models, and results on benchmark datasets of ou

Subeesh Vasu 78 Nov 19, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning This is a small repo illustrating how to use WebDataset on ImageNet. usi

50 Dec 16, 2022
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
Trading environnement for RL agents, backtesting and training.

TradzQAI Trading environnement for RL agents, backtesting and training. Live session with coinbasepro-python is finaly arrived ! Available sessions: L

Tony Denion 164 Oct 30, 2022
A diff tool for language models

LMdiff Qualitative comparison of large language models. Demo & Paper: http://lmdiff.net LMdiff is a MIT-IBM Watson AI Lab collaboration between: Hendr

Hendrik Strobelt 27 Dec 29, 2022
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Sentinel-1 vessel detection model used in the xView3 challenge

sar_vessel_detect Code for the AI2 Skylight team's submission in the xView3 competition (https://iuu.xview.us) for vessel detection in Sentinel-1 SAR

AI2 6 Sep 10, 2022
Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

HierarchicyBandit Introduction This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Inte

yu song 5 Sep 09, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
Numba-accelerated Pythonic implementation of MPDATA with examples in Python, Julia and Matlab

PyMPDATA PyMPDATA is a high-performance Numba-accelerated Pythonic implementation of the MPDATA algorithm of Smolarkiewicz et al. used in geophysical

Atmospheric Cloud Simulation Group @ Jagiellonian University 15 Nov 23, 2022
Paaster is a secure by default end-to-end encrypted pastebin built with the objective of simplicity.

Follow the development of our desktop client here Paaster Paaster is a secure by default end-to-end encrypted pastebin built with the objective of sim

Ward 211 Dec 25, 2022
Quickly and easily create / train a custom DeepDream model

Dream-Creator This project aims to simplify the process of creating a custom DeepDream model by using pretrained GoogleNet models and custom image dat

55 Dec 27, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX

CQL-JAX This repository implements Conservative Q Learning for Offline Reinforcement Reinforcement Learning in JAX (FLAX). Implementation is built on

Karush Suri 8 Nov 07, 2022
Implementation of "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing".

DeepOrder Implementation of DeepOrder for the paper "DeepOrder: Deep Learning for Test Case Prioritization in Continuous Integration Testing". Project

6 Nov 07, 2022
BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins

BT-Unet: A-Self-supervised-learning-framework-for-biomedical-image-segmentation-using-Barlow-Twins Deep learning has brought most profound contributio

Narinder Singh Punn 12 Dec 04, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
1st Place Solution to ECCV-TAO-2020: Detect and Represent Any Object for Tracking

Instead, two models for appearance modeling are included, together with the open-source BAGS model and the full set of code for inference. With this code, you can achieve around 79 Oct 08, 2022

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
Single/multi view image(s) to voxel reconstruction using a recurrent neural network

3D-R2N2: 3D Recurrent Reconstruction Neural Network This repository contains the source codes for the paper Choy et al., 3D-R2N2: A Unified Approach f

Chris Choy 1.2k Dec 27, 2022