RGB-D Local Implicit Function for Depth Completion of Transparent Objects

Overview

RGB-D Local Implicit Function for Depth Completion of Transparent Objects

[Project Page] [Paper]

Overview

This repository maintains the official implementation of our CVPR 2021 paper:

RGB-D Local Implicit Function for Depth Completion of Transparent Objects

By Luyang Zhu, Arsalan Mousavian, Yu Xiang, Hammad Mazhar, Jozef van Eenbergen, Shoubhik Debnath, Dieter Fox

Requirements

The code has been tested on the following system:

  • Ubuntu 18.04
  • Nvidia GPU (4 Tesla V100 32GB GPUs) and CUDA 10.2
  • python 3.7
  • pytorch 1.6.0

Installation

Docker (Recommended)

We provide a Dockerfile for building a container to run our code. More details about GPU accelerated Docker containers can be found here.

Local Installation

We recommend creating a new conda environment for a clean installation of the dependencies.

conda create --name lidf python=3.7
conda activate lidf

Make sure CUDA 10.2 is your default cuda. If your CUDA 10.2 is installed in /usr/local/cuda-10.2, add the following lines to your ~/.bashrc and run source ~/.bashrc:

export PATH=$PATH:/usr/local/cuda-10.2/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.2/lib64
export CPATH=$CPATH:/usr/local/cuda-10.2/include

Install libopenexr-dev

sudo apt-get update && sudo apt-get install libopenexr-dev

Install dependencies, we use ${REPO_ROOT_DIR} to represent the working directory of this repo.

cd ${REPO_ROOT_DIR}
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Dataset Preparation

ClearGrasp Dataset

ClearGrasp can be downloaded at their official website (Both training and testing dataset are needed). After you download zip files and unzip them on your local machine, the folder structure should be like

${DATASET_ROOT_DIR}
├── cleargrasp
│   ├── cleargrasp-dataset-train
│   ├── cleargrasp-dataset-test-val

Omniverse Object Dataset

Omniverse Object Dataset can be downloaded here. After you download zip files and unzip them on your local machine, the folder structure should be like

${DATASET_ROOT_DIR}
├── omniverse
│   ├── train
│   │	├── 20200904
│   │	├── 20200910

Soft link dataset

cd ${REPO_ROOT_DIR}
ln -s ${DATASET_ROOT_DIR}/cleargrasp datasets/cleargrasp
ln -s ${DATASET_ROOT_DIR}/omniverse datasets/omniverse

Testing

We provide pretrained checkpoints at the Google Drive. After you download the file, please unzip and copy the checkpoints folder under ${REPO_ROOT_DIR}.

Change the following line in ${REPO_ROOT_DIR}/src/experiments/implicit_depth/run.sh:

# To test first stage model (LIDF), use the following line
cfg_paths=experiments/implicit_depth/test_lidf.yaml
# To test second stage model (refinement model), use the following line
cfg_paths=experiments/implicit_depth/test_refine.yaml

After that, run the testing code:

cd src
bash experiments/implicit_depth/run.sh

Training

First stage model (LIDF)

Change the following line in ${REPO_ROOT_DIR}/src/experiments/implicit_depth/run.sh:

cfg_paths=experiments/implicit_depth/train_lidf.yaml

After that, run the training code:

cd src
bash experiments/implicit_depth/run.sh

Second stage model (refinement model)

In ${REPO_ROOT_DIR}/src/experiments/implicit_depth/train_refine.yaml, set lidf_ckpt_path to the path of the best checkpoint in the first stage training. Change the following line in ${REPO_ROOT_DIR}/src/experiments/implicit_depth/run.sh:

cfg_paths=experiments/implicit_depth/train_refine.yaml

After that, run the training code:

cd src
bash experiments/implicit_depth/run.sh

Second stage model (refinement model) with hard negative mining

In ${REPO_ROOT_DIR}/src/experiments/implicit_depth/train_refine_hardneg.yaml, set lidf_ckpt_path to the path of the best checkpoint in the first stage training, set checkpoint_path to the path of the best checkpoint in the second stage training. Change the following line in ${REPO_ROOT_DIR}/src/experiments/implicit_depth/run.sh:

cfg_paths=experiments/implicit_depth/train_refine_hardneg.yaml

After that, run the training code:

cd src
bash experiments/implicit_depth/run.sh

License

This work is licensed under NVIDIA Source Code License - Non-commercial.

Citation

If you use this code for your research, please citing our work:

@inproceedings{zhu2021rgbd,
author    = {Luyang Zhu and Arsalan Mousavian and Yu Xiang and Hammad Mazhar and Jozef van Eenbergen and Shoubhik Debnath and Dieter Fox},
title     = {RGB-D Local Implicit Function for Depth Completion of Transparent Objects},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year      = {2021}
}
Owner
NVIDIA Research Projects
NVIDIA Research Projects
Neural-net-from-scratch - A simple Neural Network from scratch in Python using the Pymathrix library

A Simple Neural Network from scratch A Simple Neural Network from scratch in Pyt

Youssef Chafiqui 2 Jan 07, 2022
Benchmark tools for Compressive LiDAR-to-map registration

Benchmark tools for Compressive LiDAR-to-map registration This repo contains the released version of code and datasets used for our IROS 2021 paper: "

Allie 9 Nov 24, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Accompanying code for the paper Sub-Cluster AdaCos: Learning Representations for Anomalous Sound Detection.

Kevin Wilkinghoff 6 Dec 01, 2022
NLP made easy

GluonNLP: Your Choice of Deep Learning for NLP GluonNLP is a toolkit that helps you solve NLP problems. It provides easy-to-use tools that helps you l

Distributed (Deep) Machine Learning Community 2.5k Jan 04, 2023
RetinaFace: Deep Face Detection Library in TensorFlow for Python

RetinaFace is a deep learning based cutting-edge facial detector for Python coming with facial landmarks.

Sefik Ilkin Serengil 512 Dec 29, 2022
Edge Restoration Quality Assessment

ERQA - Edge Restoration Quality Assessment ERQA - a full-reference quality metric designed to analyze how good image and video restoration methods (SR

MSU Video Group 27 Dec 17, 2022
Byzantine-robust decentralized learning via self-centered clipping

Byzantine-robust decentralized learning via self-centered clipping In this paper, we study the challenging task of Byzantine-robust decentralized trai

EPFL Machine Learning and Optimization Laboratory 4 Aug 27, 2022
Official PyTorch implementation of "Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics".

Physics-aware Difference Graph Networks for Sparsely-Observed Dynamics This repository is the official PyTorch implementation of "Physics-aware Differ

USC-Melady 46 Nov 20, 2022
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
Code for "Primitive Representation Learning for Scene Text Recognition" (CVPR 2021)

Primitive Representation Learning Network (PREN) This repository contains the code for our paper accepted by CVPR 2021 Primitive Representation Learni

Ruijie Yan 76 Jan 02, 2023
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
Mesh Graphormer is a new transformer-based method for human pose and mesh reconsruction from an input image

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Oral)

CMT Code for paper Video Background Music Generation with Controllable Music Transformer (ACM MM 2021 Best Paper Award) [Paper] [Site] Directory Struc

Zhaokai Wang 198 Dec 27, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
HNECV: Heterogeneous Network Embedding via Cloud model and Variational inference

HNECV This repository provides a reference implementation of HNECV as described in the paper: HNECV: Heterogeneous Network Embedding via Cloud model a

4 Jun 28, 2022
PyTorch implementation of PSPNet

PSPNet with PyTorch Unofficial implementation of "Pyramid Scene Parsing Network" (https://arxiv.org/abs/1612.01105). This repository is just for caffe

Kazuto Nakashima 52 Nov 16, 2022
Rethinking the U-Net architecture for multimodal biomedical image segmentation

MultiResUNet Rethinking the U-Net architecture for multimodal biomedical image segmentation This repository contains the original implementation of "M

Nabil Ibtehaz 308 Jan 05, 2023
Py-FEAT: Python Facial Expression Analysis Toolbox

Py-FEAT is a suite for facial expressions (FEX) research written in Python. This package includes tools to detect faces, extract emotional facial expressions (e.g., happiness, sadness, anger), facial

Computational Social Affective Neuroscience Laboratory 147 Jan 06, 2023