MoveNet Single Pose on OpenVINO

Overview

MoveNet Single Pose tracking on OpenVINO

Running Google MoveNet Single Pose models on OpenVINO.

A convolutional neural network model that runs on RGB images and predicts human joint locations of a single person. Two variant: Lightning and Thunder, the latter being slower but more accurate. MoveNet uses an smart cropping based on detections from the previous frame when the input is a sequence of frames. This allows the model to devote its attention and resources to the main subject, resulting in much better prediction quality without sacrificing the speed.

Demo

For Blazepose, a challenger, please visit : openvino_blazepose

Install

You need OpenVINO 2021.3 (does not work with 2021.2) and OpenCV installed on your computer and to clone/download this repository.

Run

Usage:

> python3 MovenetOpenvino.py -h                                               
usage: MovenetOpenvino.py [-h] [-i INPUT] [-p {16,32}]
                          [-m {lightning,thunder}] [--xml XML] [-d DEVICE]
                          [-s SCORE_THRESHOLD] [-o OUTPUT]

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        Path to video or image file to use as input
                        (default=0)
  -p {16,32}, --precision {16,32}
                        Precision (default=32
  -m {lightning,thunder}, --model {lightning,thunder}
                        Model to use (default=thunder
  --xml XML             Path to an .xml file for model
  -d DEVICE, --device DEVICE
                        Target device to run the model (default=CPU)
  -s SCORE_THRESHOLD, --score_threshold SCORE_THRESHOLD
                        Confidence score to determine whether a keypoint
                        prediction is reliable (default=0.200000)
  -o OUTPUT, --output OUTPUT
                        Path to output video file

Examples :

  • To use default webcam camera as input, Thunder model on CPU :

    python3 MovenetOpenvino.py

  • To use default webcam camera as input, Thunder model on MyriadX :

    python3 MovenetOpenvino.py -d MYRIAD

  • To use a file (video or image) as input :

    python3 MovenetOpenvino.py -i filename

  • To use Lightning instead of Thunder the version of the landmark model.

    python3 BlazeposeOpenvino.py -m lightning

Keypress Function
space Pause
c Show/hide cropping region
f Show/hide FPS

|

Performance with OpenVINO

My FPS measurements on a 30 seconds video:

CPU (i7700k) MyriadX
MoveNet Thunder 62 11.2
MoveNet Lightning 114 20.1
BlazePose Full 114 12.0
BlazePose Lite 132 19.9

|

The models

They were generated by PINTO and are also available there: https://github.com/PINTO0309/PINTO_model_zoo/tree/main/115_MoveNet

Credits

Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
Deep learning model, heat map, data prepo

deep learning model, heat map, data prepo

Pamela Dekas 1 Jan 14, 2022
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
Image reconstruction done with untrained neural networks.

PyTorch Deep Image Prior An implementation of image reconstruction methods from Deep Image Prior (Ulyanov et al., 2017) in PyTorch. The point of the p

Atiyo Ghosh 192 Nov 30, 2022
Code for "Training Neural Networks with Fixed Sparse Masks" (NeurIPS 2021).

Fisher Induced Sparse uncHanging (FISH) Mask This repo contains the code for Fisher Induced Sparse uncHanging (FISH) Mask training, from "Training Neu

Varun Nair 37 Dec 30, 2022
Randstad Artificial Intelligence Challenge (powered by VGEN). Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato

Randstad Artificial Intelligence Challenge (powered by VGEN) Soluzione proposta da Stefano Fiorucci (anakin87) - primo classificato Struttura director

Stefano Fiorucci 1 Nov 13, 2021
9th place solution

AllDataAreExt-Galixir-Kaggle-HPA-2021-Solution Team Members Qishen Ha is Master of Engineering from the University of Tokyo. Machine Learning Engineer

daishu 5 Nov 18, 2021
Melanoma Skin Cancer Detection using Convolutional Neural Networks and Transfer Learning🕵🏻‍♂️

This is a Kaggle competition in which we have to identify if the given lesion image is malignant or not for Melanoma which is a type of skin cancer.

Vipul Shinde 1 Jan 27, 2022
Learning Dense Representations of Phrases at Scale (Lee et al., 2020)

DensePhrases DensePhrases provides answers to your natural language questions from the entire Wikipedia in real-time. While it efficiently searches th

Princeton Natural Language Processing 540 Dec 30, 2022
In this project we investigate the performance of the SetCon model on realistic video footage. Therefore, we implemented the model in PyTorch and tested the model on two example videos.

Contrastive Learning of Object Representations Supervisor: Prof. Dr. Gemma Roig Institutions: Goethe University CVAI - Computational Vision & Artifici

Dirk Neuhäuser 6 Dec 08, 2022
Rainbow is all you need! A step-by-step tutorial from DQN to Rainbow

Do you want a RL agent nicely moving on Atari? Rainbow is all you need! This is a step-by-step tutorial from DQN to Rainbow. Every chapter contains bo

Jinwoo Park (Curt) 1.4k Dec 29, 2022
An AutoML Library made with Optuna and PyTorch Lightning

An AutoML Library made with Optuna and PyTorch Lightning Installation Recommended pip install -U gradsflow From source pip install git+https://github.

GradsFlow 294 Dec 17, 2022
The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal Transport Maps, ICLR 2022.

Generative Modeling with Optimal Transport Maps The repository contains reproducible PyTorch source code of our paper Generative Modeling with Optimal

Litu Rout 30 Dec 22, 2022
Talk covering the features of skorch

Skorch Talk Skorch - A Union of Scikit-learn and PyTorch Presentation The slides can be downloaded at: download link. Google Colab Part One - MNIST Pa

Thomas J. Fan 3 Oct 20, 2020
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Python implementation of Wu et al (2018)'s registration fusion

reg-fusion Projection of a central sulcus probability map using the RF-ANTs approach (right hemisphere shown). This is a Python implementation of Wu e

Dan Gale 26 Nov 12, 2021
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
Cascading Feature Extraction for Fast Point Cloud Registration (BMVC 2021)

Cascading Feature Extraction for Fast Point Cloud Registration This repository contains the source code for the paper [Arxive link comming soon]. Meth

7 May 26, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
MaRS - a recursive filtering framework that allows for truly modular multi-sensor integration

The Modular and Robust State-Estimation Framework, or short, MaRS, is a recursive filtering framework that allows for truly modular multi-sensor integration

Control of Networked Systems - University of Klagenfurt 143 Dec 29, 2022