Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

Related tags

Deep Learningcogail
Overview

CoGAIL

Table of Content

Overview

This repository is the implementation code of the paper "Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration"(arXiv, Project, Video) by Wang et al. at Stanford Vision and Learning Lab. In this repo, we provide our full implementation code of training and evaluation.

Installation

  • python 3.6+
conda create -n cogail python=3.6
conda activate cogail
  • iGibson 1.0 variant version for co-gail. For more details of iGibson installation please refer to Link
git clone https://github.com/j96w/iGibson.git --recursive
cd iGibson
git checkout cogail
python -m pip install -e .

Please also download the assets of iGibson (models of the objects, 3D scenes, etc.) follow the instruction. The data should be located at your_installation_path/igibson/data/. After downloaded the dataset, copy the modified robot and humanoid mesh file to this location as follows

cd urdfs
cp fetch.urdf your_installation_path/igibson/data/assets/models/fetch/.
cp camera.urdf your_installation_path/igibson/data/assets/models/grippers/basic_gripper/.
cp -r humanoid_hri your_installation_path/igibson/data/assets/models/.
  • other requirements
cd cogail
python -m pip install -r requirements.txt

Dataset

You can download the collected human-human collaboration demonstrations for Link. The demos for cogail_exp1_2dfq is collected by a pair of joysticks on an xbox controller. The demos for cogail_exp2_handover and cogail_exp3_seqmanip are collected with two phones on the teleoperation system RoboTurk. After downloaded the file, simply unzip them at cogail/ as follows

unzip dataset.zip
mv dataset your_installation_path/cogail/dataset

Training

There are three environments (cogail_exp1_2dfq, cogail_exp2_handover, cogail_exp3_seqmanip) implemented in this work. Please specify the choice of environment with --env-name

python scripts/train.py --env-name [cogail_exp1_2dfq / cogail_exp2_handover / cogail_exp3_seqmanip]

Evaluation

Evaluation on unseen human demos (replay evaluation):

python scripts/eval_replay.py --env-name [cogail_exp1_2dfq / cogail_exp2_handover / cogail_exp3_seqmanip]

Trained Checkpoints

You can download the trained checkpoints for all three environments from Link.

Acknowledgement

The cogail_exp1_2dfq is implemented with Pygame. The cogail_exp2_handover and cogail_exp3_seqmanip are implemented in iGibson v1.0.

The demos for robot manipulation in iGibson is collected with RoboTurk.

Code is based on the PyTorch GAIL implementation by ikostrikov (https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail.git).

Citations

Please cite Co-GAIL if you use this repository in your publications:

@article{wang2021co,
  title={Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration},
  author={Wang, Chen and P{\'e}rez-D'Arpino, Claudia and Xu, Danfei and Fei-Fei, Li and Liu, C Karen and Savarese, Silvio},
  journal={arXiv preprint arXiv:2108.06038},
  year={2021}
}

License

Licensed under the MIT License

Owner
Jeremy Wang
Ph.D. student, Stanford
Jeremy Wang
HomoInterpGAN - Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation

HomoInterpGAN Homomorphic Latent Space Interpolation for Unpaired Image-to-image Translation (CVPR 2019, oral) Installation The implementation is base

Ying-Cong Chen 99 Nov 15, 2022
AirLoop: Lifelong Loop Closure Detection

AirLoop This repo contains the source code for paper: Dasong Gao, Chen Wang, Sebastian Scherer. "AirLoop: Lifelong Loop Closure Detection." arXiv prep

Chen Wang 53 Jan 03, 2023
Much faster than SORT(Simple Online and Realtime Tracking), a little worse than SORT

QSORT QSORT(Quick + Simple Online and Realtime Tracking) is a simple online and realtime tracking algorithm for 2D multiple object tracking in video s

Yonghye Kwon 8 Jul 27, 2022
The pytorch implementation of SOKD (BMVC2021).

Semi-Online Knowledge Distillation Implementations of SOKD. Requirements This repo was tested with Python 3.8, PyTorch 1.5.1, torchvision 0.6.1, CUDA

4 Dec 19, 2021
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
Revisting Open World Object Detection

Revisting Open World Object Detection Installation See INSTALL.md. Dataset Our new data division is based on COCO2017. We divide the training set into

58 Dec 23, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
QR2Pass-project - A proof of concept for an alternative (passwordless) authentication system to a web server

QR2Pass This is a proof of concept for an alternative (passwordless) authenticat

4 Dec 09, 2022
Convert scikit-learn models to PyTorch modules

sk2torch sk2torch converts scikit-learn models into PyTorch modules that can be tuned with backpropagation and even compiled as TorchScript. Problems

Alex Nichol 101 Dec 16, 2022
RuDOLPH: One Hyper-Modal Transformer can be creative as DALL-E and smart as CLIP

[Paper] [Хабр] [Model Card] [Colab] [Kaggle] RuDOLPH 🦌 🎄 ☃️ One Hyper-Modal Tr

Sber AI 230 Dec 31, 2022
Differentiable Quantum Chemistry (only Differentiable Density Functional Theory and Hartree Fock at the moment)

DQC: Differentiable Quantum Chemistry Differentiable quantum chemistry package. Currently only support differentiable density functional theory (DFT)

75 Dec 02, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
Easily Process a Batch of Cox Models

ezcox: Easily Process a Batch of Cox Models The goal of ezcox is to operate a batch of univariate or multivariate Cox models and return tidy result. ⏬

Shixiang Wang 15 May 23, 2022
This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling

deSpeckNet-TF-GEE This repository contains the re-implementation of our paper deSpeckNet: Generalizing Deep Learning Based SAR Image Despeckling publi

Adugna Mullissa 16 Sep 07, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
An LSTM for time-series classification

Update 10-April-2017 And now it works with Python3 and Tensorflow 1.1.0 Update 02-Jan-2017 I updated this repo. Now it works with Tensorflow 0.12. In

Rob Romijnders 391 Dec 27, 2022
Code for our NeurIPS 2021 paper: Sparsely Changing Latent States for Prediction and Planning in Partially Observable Domains

GateL0RD This is a lightweight PyTorch implementation of GateL0RD, our RNN presented in "Sparsely Changing Latent States for Prediction and Planning i

Autonomous Learning Group 16 Nov 03, 2022
Keras + Hyperopt: A very simple wrapper for convenient hyperparameter optimization

This project is now archived. It's been fun working on it, but it's time for me to move on. Thank you for all the support and feedback over the last c

Max Pumperla 2.1k Jan 03, 2023
To SMOTE, or not to SMOTE?

To SMOTE, or not to SMOTE? This package includes the code required to repeat the experiments in the paper and to analyze the results. To SMOTE, or not

Amazon Web Services 1 Jan 03, 2022
[ICCV 2021] Code release for "Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks"

Sub-bit Neural Networks: Learning to Compress and Accelerate Binary Neural Networks By Yikai Wang, Yi Yang, Fuchun Sun, Anbang Yao. This is the pytorc

Yikai Wang 26 Nov 20, 2022