A Python library for adversarial machine learning focusing on benchmarking adversarial robustness.

Overview

ARES

This repository contains the code for ARES (Adversarial Robustness Evaluation for Safety), a Python library for adversarial machine learning research focusing on benchmarking adversarial robustness on image classification correctly and comprehensively.

We benchmark the adversarial robustness using 15 attacks and 16 defenses under complete threat models, which is described in the following paper

Benchmarking Adversarial Robustness on Image Classification (CVPR 2020, Oral)

Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao Xiao, and Jun Zhu.

Feature overview:

  • Built on TensorFlow, and support TensorFlow & PyTorch models with the same interface.
  • Support many attacks in various threat models.
  • Provide ready-to-use pre-trained baseline models (8 on ImageNet & 8 on CIFAR10).
  • Provide efficient & easy-to-use tools for benchmarking models.

Citation

If you find ARES useful, you could cite our paper on benchmarking adversarial robustness using all models, all attacks & defenses supported in ARES. We provide a BibTeX entry of this paper below:

@inproceedings{dong2020benchmarking,
  title={Benchmarking Adversarial Robustness on Image Classification},
  author={Dong, Yinpeng and Fu, Qi-An and Yang, Xiao and Pang, Tianyu and Su, Hang and Xiao, Zihao and Zhu, Jun},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
  pages={321--331},
  year={2020}
}

Installation

Since ARES is still under development, please clone the repository and install the package:

git clone https://github.com/thu-ml/ares
cd ares/
pip install -e .

The requirements.txt includes its dependencies, you might want to change PyTorch's version as well as TensorFlow 1's version. TensorFlow 1.13 or later should work fine.

As for python version, Python 3.5 or later should work fine.

The Boundary attack and the Evolutionary attack require mpi4py and a working MPI with enough localhost slots. For example, you could set the OMPI_MCA_rmaps_base_oversubscribe environment variable to yes for OpenMPI.

Download Datasets & Model Checkpoints

By default, ARES would save datasets and model checkpoints under the ~/.ares directory. You could override it by setting the ARES_RES_DIR environment variable to an alternative location.

We support 2 datasets: CIFAR-10 and ImageNet.

To download the CIFAR-10 dataset, please run:

python3 ares/dataset/cifar10.py

To download the ImageNet dataset, please run:

python3 ares/dataset/imagenet.py

for instructions.

ARES includes third party models' code in the third_party/ directory as git submodules. Before you use these models, you need to initialize these submodules:

git submodule init
git submodule update --depth 1

The example/cifar10 directory and example/imagenet directories include wrappers for these models. Run the model's .py file to download its checkpoint or view instructions for downloading. For example, if you want to download the ResNet56 model's checkpoint, please run:

python3 example/cifar10/resnet56.py

Documentation

We provide API docs as well as tutorials at https://thu-ml-ares.rtfd.io/.

Quick Examples

ARES provides command line interface to run benchmarks. For example, to run distortion benchmark on ResNet56 model for CIFAR-10 dataset using CLI:

python3 -m ares.benchmark.distortion_cli --method mim --dataset cifar10 --offset 0 --count 1000 --output mim.npy example/cifar10/resnet56.py --distortion 0.1 --goal ut --distance-metric l_inf --batch-size 100 --iteration 10 --decay-factor 1.0 --logger

This command would find the minimal adversarial distortion achieved using the MIM attack with decay factor of 1.0 on the example/cifar10/resnet56.py model with L∞ distance and save the result to mim.npy.

For more examples and usages (e.g. how to define new models), please browse our documentation website mentioned before.

Acknowledgement

This work was supported by the National Key Research and Development Program of China, Beijing Academy of Artificial Intelligence (BAAI), a grant from Tsinghua Institute for Guo Qiang.

Owner
Tsinghua Machine Learning Group
Tsinghua Machine Learning Group
End-to-end speech secognition toolkit

End-to-end speech secognition toolkit This is an E2E ASR toolkit modified from Espnet1 (version 0.9.9). This is the official implementation of paper:

Jinchuan Tian 147 Dec 28, 2022
A simple consistency training framework for semi-supervised image semantic segmentation

PseudoSeg: Designing Pseudo Labels for Semantic Segmentation PseudoSeg is a simple consistency training framework for semi-supervised image semantic s

Google Interns 143 Dec 13, 2022
An addernet CUDA version

Training addernet accelerated by CUDA Usage cd adder_cuda python setup.py install cd .. python main.py Environment pytorch 1.10.0 CUDA 11.3 benchmark

LingXY 4 Jun 20, 2022
Bald-to-Hairy Translation Using CycleGAN

GANiry: Bald-to-Hairy Translation Using CycleGAN Official PyTorch implementation of GANiry. GANiry: Bald-to-Hairy Translation Using CycleGAN, Fidan Sa

Fidan Samet 10 Oct 27, 2022
Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evalua

Autonomous Agents Research Group (University of Edinburgh) 2 Oct 09, 2022
Super Pix Adv - Offical implemention of Robust Superpixel-Guided Attentional Adversarial Attack (CVPR2020)

Super_Pix_Adv Offical implemention of Robust Superpixel-Guided Attentional Adver

DLight 8 Oct 26, 2022
DiffWave is a fast, high-quality neural vocoder and waveform synthesizer.

DiffWave DiffWave is a fast, high-quality neural vocoder and waveform synthesizer. It starts with Gaussian noise and converts it into speech via itera

LMNT 498 Jan 03, 2023
[Preprint] "Bag of Tricks for Training Deeper Graph Neural Networks A Comprehensive Benchmark Study" by Tianlong Chen*, Kaixiong Zhou*, Keyu Duan, Wenqing Zheng, Peihao Wang, Xia Hu, Zhangyang Wang

Bag of Tricks for Training Deeper Graph Neural Networks: A Comprehensive Benchmark Study Codes for [Preprint] Bag of Tricks for Training Deeper Graph

VITA 101 Dec 29, 2022
A general, feasible, and extensible framework for classification tasks.

Pytorch Classification A general, feasible and extensible framework for 2D image classification. Features Easy to configure (model, hyperparameters) T

Eugene 26 Nov 22, 2022
Basics of 2D and 3D Human Pose Estimation.

Human Pose Estimation 101 If you want a slightly more rigorous tutorial and understand the basics of Human Pose Estimation and how the field has evolv

Sudharshan Chandra Babu 293 Dec 14, 2022
RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into tables through jointly extracting intervention, outcome and outcome measure entities and their relations.

Randomised controlled trial abstract result tabulator RCT-ART is an NLP pipeline built with spaCy for converting clinical trial result sentences into

2 Sep 16, 2022
Asynchronous Advantage Actor-Critic in PyTorch

Asynchronous Advantage Actor-Critic in PyTorch This is PyTorch implementation of A3C as described in Asynchronous Methods for Deep Reinforcement Learn

Reiji Hatsugai 38 Dec 12, 2022
Official repository of ICCV21 paper "Viewpoint Invariant Dense Matching for Visual Geolocalization"

Viewpoint Invariant Dense Matching for Visual Geolocalization: PyTorch implementation This is the implementation of the ICCV21 paper: G Berton, C. Mas

Gabriele Berton 44 Jan 03, 2023
A no-BS, dead-simple training visualizer for tf-keras

A no-BS, dead-simple training visualizer for tf-keras TrainingDashboard Plot inter-epoch and intra-epoch loss and metrics within a jupyter notebook wi

Vibhu Agrawal 3 May 28, 2021
simple artificial intelligence utilities

Simple AI Project home: http://github.com/simpleai-team/simpleai This lib implements many of the artificial intelligence algorithms described on the b

921 Dec 08, 2022
Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically.

Experimenting with computer vision techniques to generate annotated image datasets from gameplay recordings automatically. The collected data will then be used to train a deep neural network that can

Martin Valchev 3 Apr 24, 2022
Deep metric learning methods implemented in Chainer

Deep Metric Learning Implementation of several methods for deep metric learning in Chainer v4.2.0. Proxy-NCA: No Fuss Distance Metric Learning using P

ronekko 156 Nov 28, 2022
Official implementation of Few-Shot and Continual Learning with Attentive Independent Mechanisms

Few-Shot and Continual Learning with Attentive Independent Mechanisms This repository is the official implementation of Few-Shot and Continual Learnin

Chikan_Huang 25 Dec 08, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021