Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Overview

Punctuation Restoration using Transformer Models

This repository contins official implementation of the paper Punctuation Restoration using Transformer Models for High-and Low-Resource Languages accepted at the EMNLP workshop W-NUT 2020.

Data

English

English datasets are provided in data/en directory. These are collected from here.

Bangla

Bangla datasets are provided in data/bn directory.

Model Architecture

We fine-tune a Transformer architecture based language model (e.g., BERT) for the punctuation restoration task. Transformer encoder is followed by a bidirectional LSTM and linear layer that predicts target punctuation token at each sequence position.

Dependencies

Install PyTorch following instructions from PyTorch website. Remaining dependencies can be installed with the following command

pip install -r requirements.txt

Training

To train punctuation restoration model with optimal parameter settings for English run the following command

python src/train.py --cuda=True --pretrained-model=roberta-large --freeze-bert=False --lstm-dim=-1 
--language=english --seed=1 --lr=5e-6 --epoch=10 --use-crf=False --augment-type=all  --augment-rate=0.15 
--alpha-sub=0.4 --alpha-del=0.4 --data-path=data --save-path=out

To train for Bangla the corresponding command is

python src/train.py --cuda=True --pretrained-model=xlm-roberta-large --freeze-bert=False --lstm-dim=-1 
--language=bangla --seed=1 --lr=5e-6 --epoch=10 --use-crf=False --augment-type=all  --augment-rate=0.15 
--alpha-sub=0.4 --alpha-del=0.4 --data-path=data --save-path=out

Supported models for English

bert-base-uncased
bert-large-uncased
bert-base-multilingual-cased
bert-base-multilingual-uncased
xlm-mlm-en-2048
xlm-mlm-100-1280
roberta-base
roberta-large
distilbert-base-uncased
distilbert-base-multilingual-cased
xlm-roberta-base
xlm-roberta-large
albert-base-v1
albert-base-v2
albert-large-v2

Supported models for Bangla

bert-base-multilingual-cased
bert-base-multilingual-uncased
xlm-mlm-100-1280
distilbert-base-multilingual-cased
xlm-roberta-base
xlm-roberta-large

Pretrained Models

You can find pretrained mdoels for RoBERTa-large model with augmentation for English here
XLM-RoBERTa-large model with augmentation for Bangla can be found here

Inference

You can run inference on unprocessed text file to produce punctuated text using inference module. Note that if the text already contains punctuation they are removed before inference.

Example script for English:

python inference.py --pretrained-model=roberta-large --weight-path=roberta-large-en.pt --language=en 
--in-file=data/test_en.txt --out-file=data/test_en_out.txt

This should create the text file with following output:

Tolkien drew on a wide array of influences including language, Christianity, mythology, including the Norse Völsunga saga, archaeology, especially at the Temple of Nodens, ancient and modern literature and personal experience. He was inspired primarily by his profession, philology. his work centred on the study of Old English literature, especially Beowulf, and he acknowledged its importance to his writings. 

Similarly, For Bangla

python inference.py --pretrained-model=xlm-roberta-large --weight-path=xlm-roberta-large-bn.pt --language=bn  
--in-file=data/test_bn.txt --out-file=data/test_bn_out.txt

The expected output is

বিংশ শতাব্দীর বাংলা মননে কাজী নজরুল ইসলামের মর্যাদা ও গুরুত্ব অপরিসীম। একাধারে কবি, সাহিত্যিক, সংগীতজ্ঞ, সাংবাদিক, সম্পাদক, রাজনীতিবিদ এবং সৈনিক হিসেবে অন্যায় ও অবিচারের বিরুদ্ধে নজরুল সর্বদাই ছিলেন সোচ্চার। তার কবিতা ও গানে এই মনোভাবই প্রতিফলিত হয়েছে। অগ্নিবীণা হাতে তার প্রবেশ, ধূমকেতুর মতো তার প্রকাশ। যেমন লেখাতে বিদ্রোহী, তেমনই জীবনে কাজেই "বিদ্রোহী কবি"। তার জন্ম ও মৃত্যুবার্ষিকী বিশেষ মর্যাদার সঙ্গে উভয় বাংলাতে প্রতি বৎসর উদযাপিত হয়ে থাকে। 

Please note that Comma includes commas, colons and dashes, Period includes full stops, exclamation marks and semicolons and Question is just question marks.

Test

Trained models can be tested on processed data using test module to prepare result.

For example, to test the best preforming English model run following command

python src/test.py --pretrained-model=roberta-large --lstm-dim=-1 --use-crf=False --data-path=data/test
--weight-path=weights/roberta-large-en.pt --sequence-length=256 --save-path=out

Please provide corresponding arguments for pretrained-model, lstm-dim, use-crf that were used during training the model. This will run test for all data available in data-path directory.

Cite this work

@inproceedings{alam-etal-2020-punctuation,
    title = "Punctuation Restoration using Transformer Models for High-and Low-Resource Languages",
    author = "Alam, Tanvirul  and
      Khan, Akib  and
      Alam, Firoj",
    booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.wnut-1.18",
    pages = "132--142",
}
Owner
Tanvirul Alam
Deep Learning, Physics, Cosmology, Mythology, RPG.
Tanvirul Alam
Little tool in python to watch anime from the terminal (the better way to watch anime)

ani-cli Script working again :), thanks to the fork by Dink4n for the alternative approach to by pass the captcha on gogoanime A cli to browse and wat

Harshith 4.5k Dec 31, 2022
Self-Supervised depth kalilia

Self-Supervised depth kalilia

24 Oct 15, 2022
Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt

Feed forward VQGAN-CLIP model, where the goal is to eliminate the need for optimizing the latent space of VQGAN for each input prompt. This is done by

Mehdi Cherti 135 Dec 30, 2022
Codebase for BMVC 2021 paper "Text Based Person Search with Limited Data"

Text Based Person Search with Limited Data This is the codebase for our BMVC 2021 paper. Please bear with me refactoring this codebase after CVPR dead

Xiao Han 33 Nov 24, 2022
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
Official code release for: EditGAN: High-Precision Semantic Image Editing

Official code release for: EditGAN: High-Precision Semantic Image Editing

565 Jan 05, 2023
Reproducing-BowNet: Learning Representations by Predicting Bags of Visual Words

Reproducing-BowNet Our reproducibility effort based on the 2020 ML Reproducibility Challenge. We are reproducing the results of this CVPR 2020 paper:

6 Mar 16, 2022
BARF: Bundle-Adjusting Neural Radiance Fields 🤮 (ICCV 2021 oral)

BARF 🤮 : Bundle-Adjusting Neural Radiance Fields Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey IEEE International Conference on Comp

Chen-Hsuan Lin 539 Dec 28, 2022
Text to Image Generation with Semantic-Spatial Aware GAN

text2image This repository includes the implementation for Text to Image Generation with Semantic-Spatial Aware GAN This repo is not completely. Netwo

CVDDL 124 Dec 30, 2022
Scalable Optical Flow-based Image Montaging and Alignment

SOFIMA SOFIMA (Scalable Optical Flow-based Image Montaging and Alignment) is a tool for stitching, aligning and warping large 2d, 3d and 4d microscopy

Google Research 16 Dec 21, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
AI drive app that can help user become beautiful.

爱美丽 Beauty 简体中文 Features Beauty is an AI drive app that can help user become beautiful. it contain those functions: face score cheek face beauty repor

Starved Midnight 1 Jan 30, 2022
Raptor-Multi-Tool - Raptor Multi Tool With Python

Promises 🔥 20 Stars and I'll fix every error that there is 50 Stars and we will

Aran 44 Jan 04, 2023
The official repository for BaMBNet

BaMBNet-Pytorch Paper

Junjun Jiang 18 Dec 04, 2022
113 Nov 28, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

Band-Adaptive Spectral-Spatial Feature Learning Neural Network for Hyperspectral Image Classification

258 Dec 29, 2022
Tidy interface to polars

tidypolars tidypolars is a data frame library built on top of the blazingly fast polars library that gives access to methods and functions familiar to

Mark Fairbanks 144 Jan 08, 2023
Pytorch implementation of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

Make-A-Scene - PyTorch Pytorch implementation (inofficial) of Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors (https://arxiv.org/

Casual GAN Papers 259 Dec 28, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022