Punctuation Restoration using Transformer Models for High-and Low-Resource Languages

Overview

Punctuation Restoration using Transformer Models

This repository contins official implementation of the paper Punctuation Restoration using Transformer Models for High-and Low-Resource Languages accepted at the EMNLP workshop W-NUT 2020.

Data

English

English datasets are provided in data/en directory. These are collected from here.

Bangla

Bangla datasets are provided in data/bn directory.

Model Architecture

We fine-tune a Transformer architecture based language model (e.g., BERT) for the punctuation restoration task. Transformer encoder is followed by a bidirectional LSTM and linear layer that predicts target punctuation token at each sequence position.

Dependencies

Install PyTorch following instructions from PyTorch website. Remaining dependencies can be installed with the following command

pip install -r requirements.txt

Training

To train punctuation restoration model with optimal parameter settings for English run the following command

python src/train.py --cuda=True --pretrained-model=roberta-large --freeze-bert=False --lstm-dim=-1 
--language=english --seed=1 --lr=5e-6 --epoch=10 --use-crf=False --augment-type=all  --augment-rate=0.15 
--alpha-sub=0.4 --alpha-del=0.4 --data-path=data --save-path=out

To train for Bangla the corresponding command is

python src/train.py --cuda=True --pretrained-model=xlm-roberta-large --freeze-bert=False --lstm-dim=-1 
--language=bangla --seed=1 --lr=5e-6 --epoch=10 --use-crf=False --augment-type=all  --augment-rate=0.15 
--alpha-sub=0.4 --alpha-del=0.4 --data-path=data --save-path=out

Supported models for English

bert-base-uncased
bert-large-uncased
bert-base-multilingual-cased
bert-base-multilingual-uncased
xlm-mlm-en-2048
xlm-mlm-100-1280
roberta-base
roberta-large
distilbert-base-uncased
distilbert-base-multilingual-cased
xlm-roberta-base
xlm-roberta-large
albert-base-v1
albert-base-v2
albert-large-v2

Supported models for Bangla

bert-base-multilingual-cased
bert-base-multilingual-uncased
xlm-mlm-100-1280
distilbert-base-multilingual-cased
xlm-roberta-base
xlm-roberta-large

Pretrained Models

You can find pretrained mdoels for RoBERTa-large model with augmentation for English here
XLM-RoBERTa-large model with augmentation for Bangla can be found here

Inference

You can run inference on unprocessed text file to produce punctuated text using inference module. Note that if the text already contains punctuation they are removed before inference.

Example script for English:

python inference.py --pretrained-model=roberta-large --weight-path=roberta-large-en.pt --language=en 
--in-file=data/test_en.txt --out-file=data/test_en_out.txt

This should create the text file with following output:

Tolkien drew on a wide array of influences including language, Christianity, mythology, including the Norse Völsunga saga, archaeology, especially at the Temple of Nodens, ancient and modern literature and personal experience. He was inspired primarily by his profession, philology. his work centred on the study of Old English literature, especially Beowulf, and he acknowledged its importance to his writings. 

Similarly, For Bangla

python inference.py --pretrained-model=xlm-roberta-large --weight-path=xlm-roberta-large-bn.pt --language=bn  
--in-file=data/test_bn.txt --out-file=data/test_bn_out.txt

The expected output is

বিংশ শতাব্দীর বাংলা মননে কাজী নজরুল ইসলামের মর্যাদা ও গুরুত্ব অপরিসীম। একাধারে কবি, সাহিত্যিক, সংগীতজ্ঞ, সাংবাদিক, সম্পাদক, রাজনীতিবিদ এবং সৈনিক হিসেবে অন্যায় ও অবিচারের বিরুদ্ধে নজরুল সর্বদাই ছিলেন সোচ্চার। তার কবিতা ও গানে এই মনোভাবই প্রতিফলিত হয়েছে। অগ্নিবীণা হাতে তার প্রবেশ, ধূমকেতুর মতো তার প্রকাশ। যেমন লেখাতে বিদ্রোহী, তেমনই জীবনে কাজেই "বিদ্রোহী কবি"। তার জন্ম ও মৃত্যুবার্ষিকী বিশেষ মর্যাদার সঙ্গে উভয় বাংলাতে প্রতি বৎসর উদযাপিত হয়ে থাকে। 

Please note that Comma includes commas, colons and dashes, Period includes full stops, exclamation marks and semicolons and Question is just question marks.

Test

Trained models can be tested on processed data using test module to prepare result.

For example, to test the best preforming English model run following command

python src/test.py --pretrained-model=roberta-large --lstm-dim=-1 --use-crf=False --data-path=data/test
--weight-path=weights/roberta-large-en.pt --sequence-length=256 --save-path=out

Please provide corresponding arguments for pretrained-model, lstm-dim, use-crf that were used during training the model. This will run test for all data available in data-path directory.

Cite this work

@inproceedings{alam-etal-2020-punctuation,
    title = "Punctuation Restoration using Transformer Models for High-and Low-Resource Languages",
    author = "Alam, Tanvirul  and
      Khan, Akib  and
      Alam, Firoj",
    booktitle = "Proceedings of the Sixth Workshop on Noisy User-generated Text (W-NUT 2020)",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.wnut-1.18",
    pages = "132--142",
}
Owner
Tanvirul Alam
Deep Learning, Physics, Cosmology, Mythology, RPG.
Tanvirul Alam
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
LVI-SAM: Tightly-coupled Lidar-Visual-Inertial Odometry via Smoothing and Mapping

LVI-SAM This repository contains code for a lidar-visual-inertial odometry and mapping system, which combines the advantages of LIO-SAM and Vins-Mono

Tixiao Shan 1.1k Dec 27, 2022
Source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree.

self-driving-car In this repository I will share the source code of all the projects of Udacity Self-Driving Car Engineer Nanodegree. Hope this might

Andrea Palazzi 2.4k Dec 29, 2022
Autonomous Perception: 3D Object Detection with Complex-YOLO

Autonomous Perception: 3D Object Detection with Complex-YOLO LiDAR object detect

Thomas Dunlap 2 Feb 18, 2022
Heterogeneous Deep Graph Infomax

Heterogeneous-Deep-Graph-Infomax Parameter Setting: HDGI-A: Node-level dimension: 16 Attention head: 4 Semantic-level attention vector: 8 learning rat

52 Oct 31, 2022
Good Classification Measures and How to Find Them

Good Classification Measures and How to Find Them This repository contains supplementary materials for the paper "Good Classification Measures and How

Yandex Research 7 Nov 13, 2022
NDE: Climate Modeling with Neural Diffusion Equation, ICDM'21

Climate Modeling with Neural Diffusion Equation Introduction This is the repository of our accepted ICDM 2021 paper "Climate Modeling with Neural Diff

Jeehyun Hwang 5 Dec 18, 2022
Code release for General Greedy De-bias Learning

General Greedy De-bias for Dataset Biases This is an extention of "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). T

4 Mar 15, 2022
Code repository for "Free View Synthesis", ECCV 2020.

Free View Synthesis Code repository for "Free View Synthesis", ECCV 2020. Setup Install the following Python packages in your Python environment - num

Intelligent Systems Lab Org 253 Dec 07, 2022
TJU Deep Learning & Neural Network

Deep_Learning & Neural_Network_Lab 实验环境 Python 3.9 Anaconda3(官网下载或清华镜像都行) PyTorch 1.10.1(安装代码如下) conda install pytorch torchvision torchaudio cudatool

St3ve Lee 1 Jan 19, 2022
Public repository containing materials used for Feed Forward (FF) Neural Networks article.

Art041_NN_Feed_Forward Public repository containing materials used for Feed Forward (FF) Neural Networks article. -- Illustration of a very simple Fee

SolClover 2 Dec 29, 2021
Model of an AI powered sign language interpreter.

TEXT AND SPEECH TO SIGN LANGUAGE. A web application which takes in text or live audio speech recording as input, converts and displays the relevant Si

Mark Gatere 4 Mar 30, 2022
Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding (AAAI 2020) - PyTorch Implementation

Scalable Attentive Sentence-Pair Modeling via Distilled Sentence Embedding PyTorch implementation for the Scalable Attentive Sentence-Pair Modeling vi

Microsoft 25 Dec 02, 2022
Nightmare-Writeup - Writeup for the Nightmare CTF Challenge from 2022 DiceCTF

Nightmare: One Byte to ROP // Alternate Solution TLDR: One byte write, no leak.

1 Feb 17, 2022
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
Train a deep learning net with OpenStreetMap features and satellite imagery.

DeepOSM Classify roads and features in satellite imagery, by training neural networks with OpenStreetMap (OSM) data. DeepOSM can: Download a chunk of

TrailBehind, Inc. 1.3k Nov 24, 2022
Eth brownie struct encoding example

eth-brownie struct encoding example Overview This repository contains an example of encoding a struct, so that it can be used in a function call, usin

Ittai Svidler 2 Mar 04, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism (SVS & TTS); AAAI 2022; Official code

DiffSinger: Singing Voice Synthesis via Shallow Diffusion Mechanism This repository is the official PyTorch implementation of our AAAI-2022 paper, in

Jinglin Liu 803 Dec 28, 2022
GndNet: Fast ground plane estimation and point cloud segmentation for autonomous vehicles using deep neural networks.

GndNet: Fast Ground plane Estimation and Point Cloud Segmentation for Autonomous Vehicles. Authors: Anshul Paigwar, Ozgur Erkent, David Sierra Gonzale

Anshul Paigwar 114 Dec 29, 2022