Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

Related tags

Deep LearningVRDP
Overview

VRDP (NeurIPS 2021)

Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language
Mingyu Ding, Zhenfang Chen, Tao Du, Ping Luo, Joshua B. Tenenbaum, and Chuang Gan

image

More details can be found at the Project Page.

If you find our work useful in your research please consider citing our paper:

@inproceedings{ding2021dynamic,
  author = {Ding, Mingyu and Chen, Zhenfang and Du, Tao and Luo, Ping and Tenenbaum, Joshua B and Gan, Chuang},
  title = {Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language},
  booktitle = {Advances In Neural Information Processing Systems},
  year = {2021}
}

Prerequisites

  • Python 3
  • PyTorch 1.3 or higher
  • All relative packages are covered by Miniconda
  • Both CPUs and GPUs are supported

Dataset preparation

  • Download videos, video annotation, questions and answers, and object proposals accordingly from the official website

  • Transform videos into ".png" frames with ffmpeg.

  • Organize the data as shown below.

    clevrer
    ├── annotation_00000-01000
    │   ├── annotation_00000.json
    │   ├── annotation_00001.json
    │   └── ...
    ├── ...
    ├── image_00000-01000
    │   │   ├── 1.png
    │   │   ├── 2.png
    │   │   └── ...
    │   └── ...
    ├── ...
    ├── questions
    │   ├── train.json
    │   ├── validation.json
    │   └── test.json
    ├── proposals
    │   ├── proposal_00000.json
    │   ├── proposal_00001.json
    │   └── ...
    
  • We also provide data for physics learning and program execution in Google Drive. You can download them optionally and put them in the ./data/ folder.

  • Download the processed data executor_data.zip for the executor. Put it in and unzip it to ./executor/data/.

Get Object Dictionaries (Concepts and Trajectories)

Download the object proposals from the region proposal network and follow the Step-by-step Training in DCL to get object concepts and trajectories.

The above process includes:

  • trajectory extraction
  • concept learning
  • trajectory refinement

Or you can download our extracted object dictionaries object_dicts.zip directly from Google Drive.

Learning

1. Differentiable Physics Learning

After we get the above object dictionaries, we learn physical parameters from object properties and trajectories.

cd dynamics/
python3 learn_dynamics.py 10000 15000
# Here argv[1] and argv[2] represent the start and end processing index respectively.

The output object physical parameters object_dicts_with_physics.zip can be downloaded from Google Drive.

2. Physics Simulation (counterfactual)

Physical simulation using learned physical parameters.

cd dynamics/
python3 physics_simulation.py 10000 15000
# Here argv[1] and argv[2] represent the start and end processing index respectively.

The output simulated trajectories/events object_simulated.zip can be downloaded from Google Drive.

3. Physics Simulation (predictive)

Correction of long-range prediction according to video observations.

cd dynamics/
python3 refine_prediction.py 10000 15000
# Here argv[1] and argv[2] represent the start and end processing index respectively.

The output refined trajectories/events object_updated_results.zip can be downloaded from Google Drive.

Evaluation

After we get the final trajectories/events, we perform the neuro-symbolic execution and evaluate the performance on the validation set.

cd executor/
python3 evaluation.py

The test json file for evaluation on evalAI can be generated by

cd executor/
python3 get_results.py

The Generalized Clerver Dataset (counterfactual_mass)

Examples

  • Predictive question image
  • Counterfactual question image

Acknowledgements

For questions regarding VRDP, feel free to post here or directly contact the author ([email protected]).

Owner
Mingyu Ding
Mingyu Ding
GraphGT: Machine Learning Datasets for Graph Generation and Transformation

GraphGT: Machine Learning Datasets for Graph Generation and Transformation Dataset Website | Paper Installation Using pip To install the core environm

y6q9 50 Aug 18, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
Tensors and neural networks in Haskell

Hasktorch Hasktorch is a library for tensors and neural networks in Haskell. It is an independent open source community project which leverages the co

hasktorch 920 Jan 04, 2023
Library of various Few-Shot Learning frameworks for text classification

FewShotText This repository contains code for the paper A Neural Few-Shot Text Classification Reality Check Environment setup # Create environment pyt

Thomas Dopierre 47 Jan 03, 2023
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding

🍐 quince Code for Quantifying Ignorance in Individual-Level Causal-Effect Estimates under Hidden Confounding 🍐 Installation $ git clone

Andrew Jesson 19 Jun 23, 2022
Official public repository of paper "Intention Adaptive Graph Neural Network for Category-Aware Session-Based Recommendation"

Intention Adaptive Graph Neural Network (IAGNN) This is the official repository of paper Intention Adaptive Graph Neural Network for Category-Aware Se

9 Nov 22, 2022
Pytorch implementation for A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose

A-NeRF: Articulated Neural Radiance Fields for Learning Human Shape, Appearance, and Pose Paper | Website | Data A-NeRF: Articulated Neural Radiance F

Shih-Yang Su 172 Dec 22, 2022
PAthological QUpath Obsession - QuPath and Python conversations

PAQUO: PAthological QUpath Obsession Welcome to paquo 👋 , a library for interacting with QuPath from Python. paquo's goal is to provide a pythonic in

Bayer AG 60 Dec 31, 2022
A Comparative Framework for Multimodal Recommender Systems

Cornac Cornac is a comparative framework for multimodal recommender systems. It focuses on making it convenient to work with models leveraging auxilia

Preferred.AI 671 Jan 03, 2023
A symbolic-model-guided fuzzer for TLS

tlspuffin TLS Protocol Under FuzzINg A symbolic-model-guided fuzzer for TLS Master Thesis | Thesis Presentation | Documentation Disclaimer: The term "

69 Dec 20, 2022
Implementation of FitVid video prediction model in JAX/Flax.

FitVid Video Prediction Model Implementation of FitVid video prediction model in JAX/Flax. If you find this code useful, please cite it in your paper:

Google Research 62 Nov 25, 2022
[CVPR 2022] Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions" paper

template-pose Pytorch implementation of "Templates for 3D Object Pose Estimation Revisited: Generalization to New objects and Robustness to Occlusions

Van Nguyen Nguyen 92 Dec 28, 2022
Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases.

Ivy is a templated deep learning framework which maximizes the portability of deep learning codebases. Ivy wraps the functional APIs of existing frameworks. Framework-agnostic functions, libraries an

Ivy 8.2k Jan 02, 2023
A minimalist environment for decision-making in autonomous driving

highway-env A collection of environments for autonomous driving and tactical decision-making tasks An episode of one of the environments available in

Edouard Leurent 1.6k Jan 07, 2023
Official Implement of CVPR 2021 paper “Cross-Modal Collaborative Representation Learning and a Large-Scale RGBT Benchmark for Crowd Counting”

RGBT Crowd Counting Lingbo Liu, Jiaqi Chen, Hefeng Wu, Guanbin Li, Chenglong Li, Liang Lin. "Cross-Modal Collaborative Representation Learning and a L

37 Dec 08, 2022
Pseudo-rng-app - whos needs science to make a random number when you have pseudoscience?

Pseudo-random numbers with pseudoscience rng is so complicated! Why cant we have a horoscopic, vibe-y way of calculating a random number? Why cant rng

Andrew Blance 1 Dec 27, 2021
From Fidelity to Perceptual Quality: A Semi-Supervised Approach for Low-Light Image Enhancement (CVPR'2020)

Under-exposure introduces a series of visual degradation, i.e. decreased visibility, intensive noise, and biased color, etc. To address these problems, we propose a novel semi-supervised learning app

Yang Wenhan 117 Jan 03, 2023
Continuous Augmented Positional Embeddings (CAPE) implementation for PyTorch

PyTorch implementation of Continuous Augmented Positional Embeddings (CAPE), by Likhomanenko et al. Enhance your Transformer positional embeddings with easy-to-use augmentations!

Guillermo Cámbara 26 Dec 13, 2022