Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

Related tags

Deep LearningVRDP
Overview

VRDP (NeurIPS 2021)

Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language
Mingyu Ding, Zhenfang Chen, Tao Du, Ping Luo, Joshua B. Tenenbaum, and Chuang Gan

image

More details can be found at the Project Page.

If you find our work useful in your research please consider citing our paper:

@inproceedings{ding2021dynamic,
  author = {Ding, Mingyu and Chen, Zhenfang and Du, Tao and Luo, Ping and Tenenbaum, Joshua B and Gan, Chuang},
  title = {Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language},
  booktitle = {Advances In Neural Information Processing Systems},
  year = {2021}
}

Prerequisites

  • Python 3
  • PyTorch 1.3 or higher
  • All relative packages are covered by Miniconda
  • Both CPUs and GPUs are supported

Dataset preparation

  • Download videos, video annotation, questions and answers, and object proposals accordingly from the official website

  • Transform videos into ".png" frames with ffmpeg.

  • Organize the data as shown below.

    clevrer
    ├── annotation_00000-01000
    │   ├── annotation_00000.json
    │   ├── annotation_00001.json
    │   └── ...
    ├── ...
    ├── image_00000-01000
    │   │   ├── 1.png
    │   │   ├── 2.png
    │   │   └── ...
    │   └── ...
    ├── ...
    ├── questions
    │   ├── train.json
    │   ├── validation.json
    │   └── test.json
    ├── proposals
    │   ├── proposal_00000.json
    │   ├── proposal_00001.json
    │   └── ...
    
  • We also provide data for physics learning and program execution in Google Drive. You can download them optionally and put them in the ./data/ folder.

  • Download the processed data executor_data.zip for the executor. Put it in and unzip it to ./executor/data/.

Get Object Dictionaries (Concepts and Trajectories)

Download the object proposals from the region proposal network and follow the Step-by-step Training in DCL to get object concepts and trajectories.

The above process includes:

  • trajectory extraction
  • concept learning
  • trajectory refinement

Or you can download our extracted object dictionaries object_dicts.zip directly from Google Drive.

Learning

1. Differentiable Physics Learning

After we get the above object dictionaries, we learn physical parameters from object properties and trajectories.

cd dynamics/
python3 learn_dynamics.py 10000 15000
# Here argv[1] and argv[2] represent the start and end processing index respectively.

The output object physical parameters object_dicts_with_physics.zip can be downloaded from Google Drive.

2. Physics Simulation (counterfactual)

Physical simulation using learned physical parameters.

cd dynamics/
python3 physics_simulation.py 10000 15000
# Here argv[1] and argv[2] represent the start and end processing index respectively.

The output simulated trajectories/events object_simulated.zip can be downloaded from Google Drive.

3. Physics Simulation (predictive)

Correction of long-range prediction according to video observations.

cd dynamics/
python3 refine_prediction.py 10000 15000
# Here argv[1] and argv[2] represent the start and end processing index respectively.

The output refined trajectories/events object_updated_results.zip can be downloaded from Google Drive.

Evaluation

After we get the final trajectories/events, we perform the neuro-symbolic execution and evaluate the performance on the validation set.

cd executor/
python3 evaluation.py

The test json file for evaluation on evalAI can be generated by

cd executor/
python3 get_results.py

The Generalized Clerver Dataset (counterfactual_mass)

Examples

  • Predictive question image
  • Counterfactual question image

Acknowledgements

For questions regarding VRDP, feel free to post here or directly contact the author ([email protected]).

Owner
Mingyu Ding
Mingyu Ding
Bridging Composite and Real: Towards End-to-end Deep Image Matting

Bridging Composite and Real: Towards End-to-end Deep Image Matting Please note that the official repository of the paper Bridging Composite and Real:

Jizhizi_Li 30 Oct 31, 2022
Code for paper "Which Training Methods for GANs do actually Converge? (ICML 2018)"

GAN stability This repository contains the experiments in the supplementary material for the paper Which Training Methods for GANs do actually Converg

Lars Mescheder 885 Jan 01, 2023
Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021.

EfficientZero (NeurIPS 2021) Open-source codebase for EfficientZero, from "Mastering Atari Games with Limited Data" at NeurIPS 2021. Thank you for you

Weirui Ye 671 Jan 03, 2023
A script depending on VASP output for calculating Fermi-Softness.

Fermi softness calculation for Vienna Ab initio Simulation Package (VASP) Update 1.1.0: Big update: Rewrote the code. Use Bader atomic division instea

qslin 11 Nov 08, 2022
This is the repository for The Machine Learning Workshops, published by AI DOJO

This is the repository for The Machine Learning Workshops, published by AI DOJO. It contains all the workshop's code with supporting project files necessary to work through the code.

AI Dojo 12 May 06, 2022
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
A novel pipeline framework for multi-hop complex KGQA task. About the paper title: Improving Multi-hop Embedded Knowledge Graph Question Answering by Introducing Relational Chain Reasoning

Rce-KGQA A novel pipeline framework for multi-hop complex KGQA task. This framework mainly contains two modules, answering_filtering_module and relati

金伟强 -上海大学人工智能小渣渣~ 16 Nov 18, 2022
Employs neural networks to classify images into four categories: ship, automobile, dog or frog

Neural Net Image Classifier Employs neural networks to classify images into four categories: ship, automobile, dog or frog Viterbi_1.py uses a classic

Riley Baker 1 Jan 18, 2022
Gender Classification Machine Learning Model using Sk-learn in Python with 97%+ accuracy and deployment

Gender-classification This is a ML model to classify Male and Females using some physical characterstics Data. Python Libraries like Pandas,Numpy and

Aryan raj 11 Oct 16, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Semantic Segmentation with SegFormer on Drone Dataset.

SegFormer_Segmentation Semantic Segmentation with SegFormer on Drone Dataset. You can check out the blog on Medium You can also try out the model with

Praneet 8 Oct 20, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
Progressive Coordinate Transforms for Monocular 3D Object Detection

Progressive Coordinate Transforms for Monocular 3D Object Detection This repository is the official implementation of PCT. Introduction In this paper,

58 Nov 06, 2022
🗺 General purpose U-Network implemented in Keras for image segmentation

TF-Unet General purpose U-Network implemented in Keras for image segmentation Getting started • Training • Evaluation Getting started Looking for Jupy

Or Fleisher 2 Aug 31, 2022
AbelNN: Deep Learning Python module from scratch

AbelNN: Deep Learning Python module from scratch I have implemented several neural networks from scratch using only Numpy. I have designed the module

Abel 2 Apr 12, 2022
Semantic Image Synthesis with SPADE

Semantic Image Synthesis with SPADE New implementation available at imaginaire repository We have a reimplementation of the SPADE method that is more

NVIDIA Research Projects 7.3k Jan 07, 2023
Using OpenAI's CLIP to upscale and enhance images

CLIP Upscaler and Enhancer Using OpenAI's CLIP to upscale and enhance images Based on nshepperd's JAX CLIP Guided Diffusion v2.4 Sample Results Viewpo

Tripp Lyons 5 Jun 14, 2022
This is the official code release for the paper Shape and Material Capture at Home

This is the official code release for the paper Shape and Material Capture at Home. The code enables you to reconstruct a 3D mesh and Cook-Torrance BRDF from one or more images captured with a flashl

89 Dec 10, 2022