A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

Overview

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing

license

This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightweight YOLO"(CSL-YOLO),

it is achieving better detection performance with only 43% FLOPs and 52% parameters than Tiny-YOLOv4.

Paper Link: https://arxiv.org/abs/2107.04829

Requirements

How to Get Started?

#Predict
python3 main.py -p cfg/predict_coco.cfg

#Train
python3 main.py -t cfg/train_coco.cfg

#Eval
python3 main.py -ce cfg/eval_coco.cfg

WebCam DEMO(on CPU)

This DEMO runs on a pure CPU environment, the CPU is I7-6600U(2.6Ghz~3.4Ghz), the model scale is 224x224, and the FPS is about 10.

Please execute the following script to get this DEMO, the "camera_idx" in the cfg file represents the camera number you specified.

#Camera DEMO
python3 main.py -d cfg/demo_coco.cfg

More Info

Change Model Scale

The model's default scale is 224x224, if you want to change the scale to 320~512,

please go to cfg/XXXX.cfg and change the following two parts:

# input_shape=[512,512,3]
# out_hw_list=[[64,64],[48,48],[32,32],[24,24],[16,16]]
# input_shape=[416,416,3]
# out_hw_list=[[52,52],[39,39],[26,26],[20,20],[13,13]]
# input_shape=[320,320,3]
# out_hw_list=[[40,40],[30,30],[20,20],[15,15],[10,10]]
input_shape=[224,224,3]
out_hw_list=[[28,28],[21,21],[14,14],[10,10],[7,7]]

weight_path=weights/224_nolog.hdf5

                         |
                         | 224 to 320
                         V
                         
# input_shape=[512,512,3]
# out_hw_list=[[64,64],[48,48],[32,32],[24,24],[16,16]]
# input_shape=[416,416,3]
# out_hw_list=[[52,52],[39,39],[26,26],[20,20],[13,13]]
input_shape=[320,320,3]
out_hw_list=[[40,40],[30,30],[20,20],[15,15],[10,10]]
# input_shape=[224,224,3]
# out_hw_list=[[28,28],[21,21],[14,14],[10,10],[7,7]]

weight_path=weights/320_nolog.hdf5

Fully Dataset

The entire MS-COCO data set is too large, here only a few pictures are stored for DEMO,

if you need complete data, please download on this page.

Our Data Format

We did not use the official format of MS-COCO, we expressed a bounding box as following:

[ left_top_x<float>, left_top_y<float>, w<float>, h<float>, confidence<float>, class<str> ]

The bounding boxes contained in a picture are represented by single json file.

For detailed format, please refer to the json file in "data/coco/train/json".

AP Performance on MS-COCO

For detailed COCO report, please refer to "mscoco_result".

TODOs

  • Improve the calculator script of FLOPs.
  • Using Focal Loss will cause overfitting, we need to explore the reasons.
Owner
Miles Zhang
Miles Zhang
The ARCA23K baseline system

ARCA23K Baseline System This is the source code for the baseline system associated with the ARCA23K dataset. Details about ARCA23K and the baseline sy

4 Jul 02, 2022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
Benchmark for evaluating open-ended generation

OpenMEVA Contributed by Jian Guan, Zhexin Zhang. Thank Jiaxin Wen for DeBugging. OpenMEVA is a benchmark for evaluating open-ended story generation me

25 Nov 15, 2022
Library for time-series-forecasting-as-a-service.

TIMEX TIMEX (referred in code as timexseries) is a framework for time-series-forecasting-as-a-service. Its main goal is to provide a simple and generi

Alessandro Falcetta 8 Jan 06, 2023
NeuroFind - A solution to the to the Task given by the Oberseminar of Messtechnik Institute of TU Dresden in 2021

NeuroFind A solution to the to the Task given by the Oberseminar of Messtechnik

1 Jan 20, 2022
Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch

SRDenseNet-pytorch Implementation of paper: "Image Super-Resolution Using Dense Skip Connections" in PyTorch (http://openaccess.thecvf.com/content_ICC

wxy 114 Nov 26, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Fully Connected DenseNet for Image Segmentation

Fully Connected DenseNets for Semantic Segmentation Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers

Somshubra Majumdar 84 Oct 31, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
[ICCV'21] UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction

UNISURF: Unifying Neural Implicit Surfaces and Radiance Fields for Multi-View Reconstruction Project Page | Paper | Supplementary | Video This reposit

331 Dec 28, 2022
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
pytorch implementation of the ICCV'21 paper "MVTN: Multi-View Transformation Network for 3D Shape Recognition"

MVTN: Multi-View Transformation Network for 3D Shape Recognition (ICCV 2021) By Abdullah Hamdi, Silvio Giancola, Bernard Ghanem Paper | Video | Tutori

Abdullah Hamdi 64 Jan 03, 2023
Incorporating Transformer and LSTM to Kalman Filter with EM algorithm

Deep learning based state estimation: incorporating Transformer and LSTM to Kalman Filter with EM algorithm Overview Kalman Filter requires the true p

zshicode 57 Dec 27, 2022
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
This GitHub repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.'

About Repository This repository contains code used for plots in NeurIPS 2021 paper 'Stochastic Multi-Armed Bandits with Control Variates.' About Code

Arun Verma 1 Nov 09, 2021
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
Learning Chinese Character style with conditional GAN

zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks Introduction Learning eastern asian language typefaces with GAN. zi2zi(字到字, me

Yuchen Tian 2.2k Jan 02, 2023