Cowsay - A rewrite of cowsay in python

Related tags

Deep Learningcowsay
Overview

Python Cowsay

A rewrite of cowsay in python. Allows for parsing of existing .cow files.

Install

pip install python-cowsay

Usage

The classic cowsay can be generated by the cowsay or cowthink functions:

from cowsay import cowsay

message = """
The most remarkable thing about my mother is that for thirty years she served
the family nothing but leftovers.  The original meal has never been found.
		-- Calvin Trillin
""".strip()
print(cowsay(message))

Will yield:

 __________________________________________ 
/ The most remarkable thing about my       \
| mother is that for thirty years she      |
| served the family nothing but leftovers. |
| The original meal has never been found.  |
|                                          |
\ -- Calvin Trillin                        /
 ------------------------------------------ 
        \   ^__^
         \  (oo)\_______
            (__)\       )\/\
                ||----w |
                ||     ||

The parameters for these functions are:

  • message – a string to wrap in the text bubble
  • cow='default' – the name of the cow (valid names from list_cows)
  • preset=None – the original cowsay presets: -bggpstwy
  • eyes=Option.eyes – A custom eye string
  • tongue=Option.tongue – A custom tongue string
  • width=40 – The width of the text bubble
  • wrap_text=True – Whether text should be wrapped in the bubble
  • cowfile=None – A custom string representing a cow

Other Functions

The available builtin cows can be found with list_cows. A cow can be chosen randomly from this list with get_random_cow.

Using Your Own Cows

A custom .cow file can be parsed using the read_dot_cow function which takes a TextIO stream. I.e., You can either create a TextIO from a string or read a file.

The read_dot_cow will look for the first heredoc in the steam and extract the heredoc contents. If no heredoc exists, the whole stream is used instead. Escape characters are then escaped. The default escape characters can be changed by passing in an optional escape dictionary parameter mapping escape codes to their chars.

For example:

from io import StringIO

from cowsay import read_dot_cow, cowthink

cow = read_dot_cow(StringIO("""
$the_cow = <<EOC;
         $thoughts
          $thoughts
           ___
          (o o)
         (  V  )
        /--m-m-
EOC
"""))
message = """
Nothing is illegal if one hundred businessmen decide to do it.
        -- Andrew Young
""".strip()
print(cowthink(message, cowfile=cow))

Will yield:

 ___________________________________ 
( Nothing is illegal if one hundred )
( businessmen decide to do it.      )
(                                   )
( -- Andrew Young                   )
 ----------------------------------- 
         o
          o
           ___
          (o o)
         (  V  )
        /--m-m-
Owner
James Ansley
PhD candidate at the University of Auckland.
James Ansley
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
[CVPR 2022] Official code for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved Neural Network Calibration"

MDCA Calibration This is the official PyTorch implementation for the paper: "A Stitch in Time Saves Nine: A Train-Time Regularizing Loss for Improved

MDCA Calibration 21 Dec 22, 2022
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN"

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

68 Dec 21, 2022
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
Ego4d dataset repository. Download the dataset, visualize, extract features & example usage of the dataset

Ego4D EGO4D is the world's largest egocentric (first person) video ML dataset and benchmark suite, with 3,600 hrs (and counting) of densely narrated v

Meta Research 118 Jan 07, 2023
Detect roadway lanes using Python OpenCV for project during the 5th semester at DHBW Stuttgart for lecture in digital image processing.

Find Line Detection (Image Processing) Identifying lanes of the road is very common task that human driver performs. It's important to keep the vehicl

LMF 4 Jun 21, 2022
The code for paper "Contrastive Spatio-Temporal Pretext Learning for Self-supervised Video Representation" which is accepted by AAAI 2022

Contrastive Spatio Temporal Pretext Learning for Self-supervised Video Representation (AAAI 2022) The code for paper "Contrastive Spatio-Temporal Pret

8 Jun 30, 2022
Object Detection using YOLO from PyImageSearch

Object Detection using YOLO from PyImageSearch By applying object detection, you’ll not only be able to determine what is in an image, but also where

Mohamed NIANG 1 Feb 09, 2022
General-purpose program synthesiser

DeepSynth General-purpose program synthesiser. This is the repository for the code of the paper "Scaling Neural Program Synthesis with Distribution-ba

Nathanaël Fijalkow 24 Oct 23, 2022
Instant Real-Time Example-Based Style Transfer to Facial Videos

FaceBlit: Instant Real-Time Example-Based Style Transfer to Facial Videos The official implementation of FaceBlit: Instant Real-Time Example-Based Sty

Aneta Texler 131 Dec 19, 2022
Deep Watershed Transform for Instance Segmentation

Deep Watershed Transform Performs instance level segmentation detailed in the following paper: Min Bai and Raquel Urtasun, Deep Watershed Transformati

193 Nov 20, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis

WaveGrad2 - PyTorch Implementation PyTorch Implementation of Google Brain's WaveGrad 2: Iterative Refinement for Text-to-Speech Synthesis. Status (202

Keon Lee 59 Dec 06, 2022
HGCN: Harmonic Gated Compensation Network For Speech Enhancement

HGCN The official repo of "HGCN: Harmonic Gated Compensation Network For Speech Enhancement", which was accepted at ICASSP2022. How to use step1: Calc

ScorpioMiku 33 Nov 14, 2022
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
Functional deep learning

Pipeline abstractions for deep learning. Full documentation here: https://lf1-io.github.io/padl/ PADL: is a pipeline builder for PyTorch. may be used

LF1 101 Nov 09, 2022
The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation

BiMix The code for Bi-Mix: Bidirectional Mixing for Domain Adaptive Nighttime Semantic Segmentation arxiv Framework: visualization results: Requiremen

stanley 18 Sep 18, 2022