This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

Overview

AB-TRAP: building invisibility shields to protect network devices

The AB-TRAP framework is applicable to the development of Network Intrusion Detection Systems (NIDS), it enables the use of updated network traffic and considers operational concerns to enable the complete deployment of the solution. It is a five-step framework consisting of (i) the generation of the attack dataset, (ii) the bonafide dataset, (iii) training of machine learning models, (iv) realization of the models, and (v) the performance evaluation of the realized model after deployment.

This repositories contains the examples for both Local Area Network (LAN), and the Internet environment taking advantage of virtualization (virtual machines and containers) to support the dataset generation.

This repository contains all the necessary files to rebuilt this project.

Content of this repository

  • /1_Attack dataset: contains the instructions and the required code to generate the attack dataset considering both LAN and Internet environment;
  • /2_Bonafide dataset: contains the instructions and the required code to generate the bonafide dataset based on the MAWILab dataset;
  • /3_Training models: contains the Jupyter Notebooks to pre-process the data, and generate the ML models (LAN and Internet cases);
  • /4_RealizAtion: contains the source code to obtain the machine learning models to be embedded on the target devices, both in the kernel-space using LKM (LAN case), and user-space with Python language (Internet case);
  • /5_Performance Evaluation: contains the instructions to evaluate the Performance of machine learning models in the target device;

Pre-requisites

For the host computer, it is required Python language with the dependencies listed in requirements.txt.

You can setup the environment with Python packet manager (pip):

$ pip install -r requirements.txt

The target computer used on this work is the Raspberry Pi 4.

Contribute to the framework

To contribute with the framework, you can use the Issues and Pull Requests from Github platform.

How to cite

@ARTICLE{9501960,  
  author={De Carvalho Bertoli, Gustavo and Pereira Júnior, Lourenço Alves and Saotome, Osamu and Dos Santos, Aldri L. 
        and Verri, Filipe Alves Neto and Marcondes, Cesar Augusto Cavalheiro and Barbieri, Sidnei and Rodrigues, Moises S. 
        and Parente De Oliveira, José M.},  
  journal={IEEE Access},   
  title={An End-to-End Framework for Machine Learning-Based Network Intrusion Detection System},   
  year={2021},  
  volume={9},  
  number={},  
  pages={106790-106805},  
  doi={10.1109/ACCESS.2021.3101188}
}
You might also like...
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.
A multi-functional library for full-stack Deep Learning. Simplifies Model Building, API development, and Model Deployment.

chitra What is chitra? chitra (चित्र) is a multi-functional library for full-stack Deep Learning. It simplifies Model Building, API development, and M

An efficient PyTorch implementation of the evaluation metrics in recommender systems.
An efficient PyTorch implementation of the evaluation metrics in recommender systems.

recsys_metrics An efficient PyTorch implementation of the evaluation metrics in recommender systems. Overview • Installation • How to use • Benchmark

A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.

Light Gradient Boosting Machine LightGBM is a gradient boosting framework that uses tree based learning algorithms. It is designed to be distributed a

Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.
Time-series-deep-learning - Developing Deep learning LSTM, BiLSTM models, and NeuralProphet for multi-step time-series forecasting of stock price.

Stock Price Prediction Using Deep Learning Univariate Time Series Predicting stock price using historical data of a company using Neural networks for

The project covers common metrics for super-resolution performance evaluation.

Super-Resolution Performance Evaluation Code The project covers common metrics for super-resolution performance evaluation. Metrics support The script

A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.
A Python-based development platform for automated trading systems - from backtesting to optimisation to livetrading.

AutoTrader AutoTrader is Python-based platform intended to help in the development, optimisation and deployment of automated trading systems. From sim

Comments
  • Simple ROC Analysis.

    Simple ROC Analysis.

    I performed a simple ROC analysis in the chosen model.

    One still needs to choose the appropriate thresholds/goals and generate the plots for the paper.

    opened by verri 0
Releases(v0.1.0)
Owner
Lab-C2DC - Laboratory of Command and Control and Cyber-security
Lab-C2DC - Laboratory of Command and Control and Cyber-security
SuRE Evaluation: A Supplementary Material

SuRE Evaluation: A Supplementary Material This repository contains supplementary material regarding the evaluations presented in the paper Visual Expl

NYU Visualization Lab 0 Dec 14, 2021
Face Recognition and Emotion Detector Device

Face Recognition and Emotion Detector Device Orange PI 1 Python 3.10.0 + Django 3.2.9 Project's file explanation Django manage.py Django commands hand

BootyAss 2 Dec 21, 2021
StyleTransfer - Open source style transfer project, based on VGG19

StyleTransfer - Open source style transfer project, based on VGG19

Patrick martins de lima 9 Dec 13, 2021
CV backbones including GhostNet, TinyNet and TNT, developed by Huawei Noah's Ark Lab.

CV Backbones including GhostNet, TinyNet, TNT (Transformer in Transformer) developed by Huawei Noah's Ark Lab. GhostNet Code TinyNet Code TNT Code Pyr

HUAWEI Noah's Ark Lab 3k Jan 08, 2023
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
Open Source Light Field Toolbox for Super-Resolution

BasicLFSR BasicLFSR is an open-source and easy-to-use Light Field (LF) image Super-Ressolution (SR) toolbox based on PyTorch, including a collection o

Squidward 50 Nov 18, 2022
A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction.

Graph2SMILES A graph-to-sequence model for one-step retrosynthesis and reaction outcome prediction. 1. Environmental setup System requirements Ubuntu:

29 Nov 18, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning

SPCL SPCL: A New Framework for Domain Adaptive Semantic Segmentation via Semantic Prototype-based Contrastive Learning Update on 2021/11/25: ArXiv Ver

Binhui Xie (谢斌辉) 11 Oct 29, 2022
Hypernetwork-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels

Hypernet-Ensemble Learning of Segmentation Probability for Medical Image Segmentation with Ambiguous Labels The implementation of Hypernet-Ensemble Le

Sungmin Hong 6 Jul 18, 2022
This folder contains the implementation of the multi-relational attribute propagation algorithm.

MrAP This folder contains the implementation of the multi-relational attribute propagation algorithm. It requires the package pytorch-scatter. Please

6 Dec 06, 2022
Library extending Jupyter notebooks to integrate with Apache TinkerPop and RDF SPARQL.

Graph Notebook: easily query and visualize graphs The graph notebook provides an easy way to interact with graph databases using Jupyter notebooks. Us

Amazon Web Services 501 Dec 28, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
Codebase for Inducing Causal Structure for Interpretable Neural Networks

Interchange Intervention Training (IIT) Codebase for Inducing Causal Structure for Interpretable Neural Networks Release Notes 12/01/2021: Code and Pa

Zen 6 Oct 10, 2022
SCAN: Learning to Classify Images without Labels, incl. SimCLR. [ECCV 2020]

Learning to Classify Images without Labels This repo contains the Pytorch implementation of our paper: SCAN: Learning to Classify Images without Label

Wouter Van Gansbeke 1.1k Dec 30, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
Structured Edge Detection Toolbox

################################################################### # # # Structure

Piotr Dollar 779 Jan 02, 2023
Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch .

PyTorch-High-Res-Stereo-Depth-Estimation Python scripts form performing stereo depth estimation using the high res stereo model in PyTorch. Stereo dep

Ibai Gorordo 26 Nov 24, 2022
PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement.

DECOR-GAN PyTorch 1.5 implementation for paper DECOR-GAN: 3D Shape Detailization by Conditional Refinement, Zhiqin Chen, Vladimir G. Kim, Matthew Fish

Zhiqin Chen 72 Dec 31, 2022
Official tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”

Tensorflow implementation for CVPR2020 paper “Learning to Cartoonize Using White-box Cartoon Representations”.

3.7k Dec 31, 2022