The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

Overview

VAENAR-TTS

This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis".

Samples | Paper | Pretrained Models

Usage

0. Dataset

  1. English: LJSpeech
  2. Mandarin: DataBaker(标贝)

1. Environment setup

conda env create -f environment.yml
conda activate vaenartts-env

2. Data pre-processing

For English using LJSpeech:

CUDA_VISIBLE_DEVICES= python preprocess.py --dataset ljspeech --data_dir /path/to/extracted/LJSpeech-1.1 --save_dir ./ljspeech

For Mandarin using Databaker(标贝):

CUDA_VISIBLE_DEVICES= python preprocess.py --dataset databaker --data_dir /path/to/extracted/biaobei --save_dir ./databaker

3. Training

For English using LJSpeech:

CUDA_VISIBLE_DEVICES=0 TF_FORCE_GPU_ALLOW_GROWTH=true python train.py --dataset ljspeech --log_dir ./lj-log_dir --test_dir ./lj-test_dir --data_dir ./ljspeech/tfrecords/ --model_dir ./lj-model_dir

For Mandarin using Databaker(标贝):

CUDA_VISIBLE_DEVICES=0 TF_FORCE_GPU_ALLOW_GROWTH=true python train.py --dataset databaker --log_dir ./db-log_dir --test_dir ./db-test_dir --data_dir ./databaker/tfrecords/ --model_dir ./db-model_dir

4. Inference (synthesize speech for the whole test set)

For English using LJSpeech:

CUDA_VISIBLE_DEVICES=0 TF_FORCE_GPU_ALLOW_GROWTH=true python inference.py --dataset ljspeech --test_dir ./lj-test-2000 --data_dir ./ljspeech/tfrecords/ --batch_size 16 --write_wavs true --draw_alignments true --ckpt_path ./lj-model_dir/ckpt-2000

For Mandarin using Databaker(标贝):

CUDA_VISIBLE_DEVICES=0 TF_FORCE_GPU_ALLOW_GROWTH=true python inference.py --dataset databaker --test_dir ./db-test-2000 --data_dir ./databaker/tfrecords/ --batch_size 16 --write_wavs true --draw_alignments true --ckpt_path ./db-model_dir/ckpt-2000

Reference

  1. XuezheMax/flowseq
  2. keithito/tacotron
Owner
THUHCSI
Human-Computer Speech Interaction Lab at Tsinghua University
THUHCSI
MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research

MOOSE (Multi-organ objective segmentation) a data-centric AI solution that generates multilabel organ segmentations to facilitate systemic TB whole-person research.The pipeline is based on nn-UNet an

QIMP team 30 Jan 01, 2023
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos.

DRLib:A concise deep reinforcement learning library, integrating HER and PER for almost off policy RL algos A concise deep reinforcement learning libr

329 Jan 03, 2023
Faster RCNN with PyTorch

Faster RCNN with PyTorch Note: I re-implemented faster rcnn in this project when I started learning PyTorch. Then I use PyTorch in all of my projects.

Long Chen 1.6k Dec 23, 2022
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
Bridging Vision and Language Model

BriVL BriVL (Bridging Vision and Language Model) 是首个中文通用图文多模态大规模预训练模型。BriVL模型在图文检索任务上有着优异的效果,超过了同期其他常见的多模态预训练模型(例如UNITER、CLIP)。 BriVL论文:WenLan: Bridgi

235 Dec 27, 2022
[ACM MM 2021] Joint Implicit Image Function for Guided Depth Super-Resolution

Joint Implicit Image Function for Guided Depth Super-Resolution This repository contains the code for: Joint Implicit Image Function for Guided Depth

hawkey 78 Dec 27, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks

TSP: Temporally-Sensitive Pretraining of Video Encoders for Localization Tasks [Paper] [Project Website] This repository holds the source code, pretra

Humam Alwassel 83 Dec 21, 2022
Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021

Disentangled Cycle Consistency for Highly-realistic Virtual Try-On, CVPR 2021 [WIP] The code for CVPR 2021 paper 'Disentangled Cycle Consistency for H

ChongjianGE 94 Dec 11, 2022
DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models

DSEE Codes for [Preprint] DSEE: Dually Sparsity-embedded Efficient Tuning of Pre-trained Language Models Xuxi Chen, Tianlong Chen, Yu Cheng, Weizhu Ch

VITA 4 Dec 27, 2021
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
Self-Supervised Learning for Domain Adaptation on Point-Clouds

Self-Supervised Learning for Domain Adaptation on Point-Clouds Introduction Self-supervised learning (SSL) allows to learn useful representations from

Idan Achituve 66 Dec 20, 2022
PyTorch Implementation of NCSOFT's FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis

FastPitchFormant - PyTorch Implementation PyTorch Implementation of FastPitchFormant: Source-filter based Decomposed Modeling for Speech Synthesis. Qu

Keon Lee 63 Jan 02, 2023
Python Auto-ML Package for Tabular Datasets

Tabular-AutoML AutoML Package for tabular datasets Tabular dataset tuning is now hassle free! Run one liner command and get best tuning and processed

Sagnik Roy 18 Nov 20, 2022
Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks

CyGNet This repository reproduces the AAAI'21 paper “Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Network

CunchaoZ 89 Jan 03, 2023
[CVPR 2022] Semi-Supervised Semantic Segmentation Using Unreliable Pseudo-Labels

Using Unreliable Pseudo Labels Official PyTorch implementation of Semi-Supervised Semantic Segmentation Using Unreliable Pseudo Labels, CVPR 2022. Ple

Haochen Wang 268 Dec 24, 2022
Notepy is a full-featured Notepad Python app

Notepy A full featured python text-editor Notable features Autocompletion for parenthesis and quote Auto identation Syntax highlighting Compile and ru

Mirko Rovere 11 Sep 28, 2022