The official implementation of VAENAR-TTS, a VAE based non-autoregressive TTS model.

Overview

VAENAR-TTS

This repo contains code accompanying the paper "VAENAR-TTS: Variational Auto-Encoder based Non-AutoRegressive Text-to-Speech Synthesis".

Samples | Paper | Pretrained Models

Usage

0. Dataset

  1. English: LJSpeech
  2. Mandarin: DataBaker(标贝)

1. Environment setup

conda env create -f environment.yml
conda activate vaenartts-env

2. Data pre-processing

For English using LJSpeech:

CUDA_VISIBLE_DEVICES= python preprocess.py --dataset ljspeech --data_dir /path/to/extracted/LJSpeech-1.1 --save_dir ./ljspeech

For Mandarin using Databaker(标贝):

CUDA_VISIBLE_DEVICES= python preprocess.py --dataset databaker --data_dir /path/to/extracted/biaobei --save_dir ./databaker

3. Training

For English using LJSpeech:

CUDA_VISIBLE_DEVICES=0 TF_FORCE_GPU_ALLOW_GROWTH=true python train.py --dataset ljspeech --log_dir ./lj-log_dir --test_dir ./lj-test_dir --data_dir ./ljspeech/tfrecords/ --model_dir ./lj-model_dir

For Mandarin using Databaker(标贝):

CUDA_VISIBLE_DEVICES=0 TF_FORCE_GPU_ALLOW_GROWTH=true python train.py --dataset databaker --log_dir ./db-log_dir --test_dir ./db-test_dir --data_dir ./databaker/tfrecords/ --model_dir ./db-model_dir

4. Inference (synthesize speech for the whole test set)

For English using LJSpeech:

CUDA_VISIBLE_DEVICES=0 TF_FORCE_GPU_ALLOW_GROWTH=true python inference.py --dataset ljspeech --test_dir ./lj-test-2000 --data_dir ./ljspeech/tfrecords/ --batch_size 16 --write_wavs true --draw_alignments true --ckpt_path ./lj-model_dir/ckpt-2000

For Mandarin using Databaker(标贝):

CUDA_VISIBLE_DEVICES=0 TF_FORCE_GPU_ALLOW_GROWTH=true python inference.py --dataset databaker --test_dir ./db-test-2000 --data_dir ./databaker/tfrecords/ --batch_size 16 --write_wavs true --draw_alignments true --ckpt_path ./db-model_dir/ckpt-2000

Reference

  1. XuezheMax/flowseq
  2. keithito/tacotron
Owner
THUHCSI
Human-Computer Speech Interaction Lab at Tsinghua University
THUHCSI
Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand

Bidimensional Leaderboards: Generate and Evaluate Language Hand in Hand Introduction We propose a generalization of leaderboards, bidimensional leader

4 Dec 03, 2022
code for our paper "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer"

SHOT++ Code for our TPAMI submission "Source Data-absent Unsupervised Domain Adaptation through Hypothesis Transfer and Labeling Transfer" that is ext

75 Dec 16, 2022
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
Source code for the Paper: CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints}

CombOptNet: Fit the Right NP-Hard Problem by Learning Integer Programming Constraints Installation Run pipenv install (at your own risk with --skip-lo

Autonomous Learning Group 65 Dec 27, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
Label Studio is a multi-type data labeling and annotation tool with standardized output format

Website • Docs • Twitter • Join Slack Community What is Label Studio? Label Studio is an open source data labeling tool. It lets you label data types

Heartex 11.7k Jan 09, 2023
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
Code for HLA-Face: Joint High-Low Adaptation for Low Light Face Detection (CVPR21)

HLA-Face: Joint High-Low Adaptation for Low Light Face Detection The official PyTorch implementation for HLA-Face: Joint High-Low Adaptation for Low L

Wenjing Wang 77 Dec 08, 2022
Relative Positional Encoding for Transformers with Linear Complexity

Stochastic Positional Encoding (SPE) This is the source code repository for the ICML 2021 paper Relative Positional Encoding for Transformers with Lin

Antoine Liutkus 48 Nov 16, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
Semantic Bottleneck Scene Generation

SB-GAN Semantic Bottleneck Scene Generation Coupling the high-fidelity generation capabilities of label-conditional image synthesis methods with the f

Samaneh Azadi 41 Nov 28, 2022
This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities

MLOps with Vertex AI This example implements the end-to-end MLOps process using Vertex AI platform and Smart Analytics technology capabilities. The ex

Google Cloud Platform 238 Dec 21, 2022
Transfer Learning library for Deep Neural Networks.

Transfer and meta-learning in Python Each folder in this repository corresponds to a method or tool for transfer/meta-learning. xfer-ml is a standalon

Amazon 245 Dec 08, 2022
Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Mortgage-loan-prediction - Show how to perform advanced Analytics and Machine Learning in Python using a full complement of PyData utilities

Deepak Nandwani 1 Dec 31, 2021
一些经典的CTR算法的复现; LR, FM, FFM, AFM, DeepFM,xDeepFM, PNN, DCN, DCNv2, DIFM, AutoInt, FiBiNet,AFN,ONN,DIN, DIEN ... (pytorch, tf2.0)

CTR Algorithm 根据论文, 博客, 知乎等方式学习一些CTR相关的算法 理解原理并自己动手来实现一遍 pytorch & tf2.0 保持一颗学徒的心! Schedule Model pytorch tensorflow2.0 paper LR ✔️ ✔️ \ FM ✔️ ✔️ Fac

luo han 149 Dec 20, 2022
The official implementation of NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021]. https://arxiv.org/pdf/2101.12378.pdf

NeMo: Neural Mesh Models of Contrastive Features for Robust 3D Pose Estimation [ICLR-2021] Release Notes The offical PyTorch implementation of NeMo, p

Angtian Wang 76 Nov 23, 2022
Pytorch Implementation for Dilated Continuous Random Field

DilatedCRF Pytorch implementation for fully-learnable DilatedCRF. If you find my work helpful, please consider our paper: @article{Mo2022dilatedcrf,

DunnoCoding_Plus 3 Nov 13, 2022
Code accompanying the paper Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs (Chen et al., CVPR 2020, Oral).

Say As You Wish: Fine-grained Control of Image Caption Generation with Abstract Scene Graphs This repository contains PyTorch implementation of our pa

Shizhe Chen 178 Dec 29, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generative Modeling" (ICCV 2021)

Manifold Matching via Deep Metric Learning for Generative Modeling A Pytorch implementation of "Manifold Matching via Deep Metric Learning for Generat

69 Dec 10, 2022