FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

Overview

FADNet++: Real-Time and Accurate Disparity Estimation with Configurable Networks

This repository contains the code (in PyTorch) for the "FADNet++" paper.

Contents

  1. Introduction
  2. Usage
  3. Results
  4. Acknowledgement
  5. Contacts

Introduction

We propose an efficient and accurate deep network for disparity estimation named FADNet with three main features:

  • It exploits efficient 2D based correlation layers with stacked blocks to preserve fast computation.
  • It combines the residual structures to make the deeper model easier to learn.
  • It contains multi-scale predictions so as to exploit a multi-scale weight scheduling training technique to improve the accuracy.

Usage

Dependencies

Package Installation

  • Execute "sh compile.sh" to compile libraries needed by GANet.
  • Enter "layers_package" and execute "sh install.sh" to install customized layers, including Channel Normalization layer and Resample layer.

We also release the docker version of this project, which has been configured completely and can be used directly. Please refer to this website for the image.

Usage of Scene Flow dataset
Download RGB cleanpass images and its disparity for three subset: FlyingThings3D, Driving, and Monkaa. Organize them as follows:
- FlyingThings3D_release/frames_cleanpass
- FlyingThings3D_release/disparity
- driving_release/frames_cleanpass
- driving_release/disparity
- monkaa_release/frames_cleanpass
- monkaa_release/disparity
Put them in the data/ folder (or soft link). The *train.sh* defaultly locates the data root path as data/.

Train

We use template scripts to configure the training task, which are stored in exp_configs. One sample "fadnet.conf" is as follows:

net=fadnet
loss=loss_configs/fadnet_sceneflow.json
outf_model=models/${net}-sceneflow
logf=logs/${net}-sceneflow.log

lr=1e-4
devices=0,1,2,3
dataset=sceneflow
trainlist=lists/SceneFlow.list
vallist=lists/FlyingThings3D_release_TEST.list
startR=0
startE=0
batchSize=16
maxdisp=-1
model=none
#model=fadnet_sceneflow.pth
Parameter Description Options
net network architecture name dispnets, dispnetc, dispnetcss, fadnet, psmnet, ganet
loss loss weight scheduling configuration file depends on the training scheme
outf_model folder name to store the model files \
logf log file name \
lr initial learning rate \
devices GPU device IDs to use depends on the hardware system
dataset dataset name to train sceneflow
train(val)list sample lists for training/validation \
startR the round index to start training (for restarting training from the checkpoint) \
startE the epoch index to start training (for restarting training from the checkpoint) \
batchSize the number of samples per batch \
maxdisp the maximum disparity that the model tries to predict \
model the model file path of the checkpoint \

We have integrated PSMNet and GANet for comparison. The sample configuration files are also given.

To start training, use the following command, dnn=CONFIG_FILE sh train.sh, such as:

dnn=fadnet sh train.sh

You do not need the suffix for CONFIG_FILE.

Evaluation

We have two modes for performance evaluation, test and detect, respectively. test requires that the testing samples should have ground truth of disparity and then reports the average End-point-error (EPE). detect does not require any ground truth for EPE computation. However, detect stores the disparity maps for each sample in the given list.

For the test mode, one can revise test.sh and run sh test.sh. The contents of test.sh are as follows:

net=fadnet
maxdisp=-1
dataset=sceneflow
trainlist=lists/SceneFlow.list
vallist=lists/FlyingThings3D_release_TEST.list

loss=loss_configs/test.json
outf_model=models/test/
logf=logs/${net}_test_on_${dataset}.log

lr=1e-4
devices=0,1,2,3
startR=0
startE=0
batchSize=8
model=models/fadnet.pth
python main.py --cuda --net $net --loss $loss --lr $lr \
               --outf $outf_model --logFile $logf \
               --devices $devices --batch_size $batchSize \
               --trainlist $trainlist --vallist $vallist \
               --dataset $dataset --maxdisp $maxdisp \
               --startRound $startR --startEpoch $startE \
               --model $model 

Most of the parameters in test.sh are similar to training. However, you can just ignore parameters, including trainlist, loss, outf_model, since they are not used in the test mode.

For the detect mode, one can revise detect.sh and run sh detect.sh. The contents of detect.sh are as follows:

net=fadnet
dataset=sceneflow

model=models/fadnet.pth
outf=detect_results/${net}-${dataset}/

filelist=lists/FlyingThings3D_release_TEST.list
filepath=data

CUDA_VISIBLE_DEVICES=0 python detecter.py --model $model --rp $outf --filelist $filelist --filepath $filepath --devices 0 --net ${net} 

You can revise the value of outf to change the folder that stores the predicted disparity maps.

Finetuning on KITTI datasets and result submission

We re-use the codes in PSMNet to finetune the pretrained models on KITTI datasets and generate disparity maps for submission. Use finetune.sh and submission.sh to do them respectively.

Pretrained Model

Update: 2020/2/6 We released the pre-trained Scene Flow model.

KITTI 2015 Scene Flow KITTI 2012
/ Google Drive /

Results

Results on Scene Flow dataset

Model EPE GPU Memory during inference (GB) Runtime (ms) on Tesla V100
FADNet 0.83 3.87 48.1
DispNetC 1.68 1.62 18.7
PSMNet 1.09 13.99 399.3
GANet 0.84 29.1 2251.1

Citation

If you find the code and paper is useful in your work, please cite our conference paper

@inproceedings{wang2020fadnet,
  title={{FADNet}: A Fast and Accurate Network for Disparity Estimation},
  author={Wang, Qiang and Shi, Shaohuai and Zheng, Shizhen and Zhao, Kaiyong and Chu, Xiaowen},
  booktitle={2020 {IEEE} International Conference on Robotics and Automation ({ICRA} 2020)},
  pages={101--107},
  year={2020}
}

Acknowledgement

We acknowledge the following repositories and papers since our project has used some codes of them.

Contacts

[email protected]

Any discussions or concerns are welcomed!

Owner
HKBU High Performance Machine Learning Lab
HKBU High Performance Machine Learning Lab
CR-Fill: Generative Image Inpainting with Auxiliary Contextual Reconstruction. ICCV 2021

crfill Usage | Web App | | Paper | Supplementary Material | More results | code for paper ``CR-Fill: Generative Image Inpainting with Auxiliary Contex

182 Dec 20, 2022
ICCV2021 Papers with Code

ICCV2021 Papers with Code

Amusi 1.4k Jan 02, 2023
Deep Markov Factor Analysis (NeurIPS2021)

Deep Markov Factor Analysis (DMFA) Codes and experiments for deep Markov factor analysis (DMFA) model accepted for publication at NeurIPS2021: A. Farn

Sarah Ostadabbas 2 Dec 16, 2022
3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021)

3DDUNET This is the code for 3D2Unet: 3D Deformable Unet for Low-Light Video Enhancement (PRCV2021) Conference Paper Link Dataset We use SMOID dataset

1 Jan 07, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
A pytorch implementation of Pytorch-Sketch-RNN

Pytorch-Sketch-RNN A pytorch implementation of https://arxiv.org/abs/1704.03477 In order to draw other things than cats, you will find more drawing da

Alexis David Jacq 172 Dec 12, 2022
Complex Answer Generation For Conversational Search Systems.

Complex Answer Generation For Conversational Search Systems. Code for Does Structure Matter? Leveraging Data-to-Text Generation for Answering Complex

Hanane Djeddal 0 Dec 06, 2021
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods

pyLiDAR-SLAM This codebase proposes modular light python and pytorch implementations of several LiDAR Odometry methods, which can easily be evaluated

Kitware, Inc. 208 Dec 16, 2022
Code for NAACL 2021 full paper "Efficient Attentions for Long Document Summarization"

LongDocSum Code for NAACL 2021 paper "Efficient Attentions for Long Document Summarization" This repository contains data and models needed to reprodu

56 Jan 02, 2023
Implementation for Shape from Polarization for Complex Scenes in the Wild

sfp-wild Implementation for Shape from Polarization for Complex Scenes in the Wild project website | paper Code and dataset will be released soon. Int

Chenyang LEI 41 Dec 23, 2022
Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle.

Paddle-Adversarial-Toolbox Paddle-Adversarial-Toolbox (PAT) is a Python library for Deep Learning Security based on PaddlePaddle. Model Zoo Common FGS

AgentMaker 17 Nov 08, 2022
Codes for [NeurIPS'21] You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership.

You are caught stealing my winning lottery ticket! Making a lottery ticket claim its ownership Codes for [NeurIPS'21] You are caught stealing my winni

VITA 8 Nov 01, 2022
NAS-Bench-x11 and the Power of Learning Curves

NAS-Bench-x11 NAS-Bench-x11 and the Power of Learning Curves Shen Yan, Colin White, Yash Savani, Frank Hutter. NeurIPS 2021. Surrogate NAS benchmarks

AutoML-Freiburg-Hannover 13 Nov 18, 2022
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
PyTorch framework, for reproducing experiments from the paper Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks

Implicit Regularization in Hierarchical Tensor Factorization and Deep Convolutional Neural Networks. Code, based on the PyTorch framework, for reprodu

Asaf 3 Dec 27, 2022
This repo generates the training data and the model for Morpheus-Deblend

Morpheus-Deblend This repo generates the training data and the model for Morpheus-Deblend. This is the active development repo for the project and as

Ryan Hausen 2 Apr 18, 2022
EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21)

EvDistill: Asynchronous Events to End-task Learning via Bidirectional Reconstruction-guided Cross-modal Knowledge Distillation (CVPR'21) Citation If y

addisonwang 18 Nov 11, 2022
Code for the paper 'A High Performance CRF Model for Clothes Parsing'.

Clothes Parsing Overview This code provides an implementation of the research paper: A High Performance CRF Model for Clothes Parsing Edgar Simo-S

Edgar Simo-Serra 119 Nov 21, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022