NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

Overview

NuPIC Studio Logo NuPIC Studio *nix Build Status

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visualization tool but an HTM builder, debugger and laboratory for experiments. It is ideal for newbies with little intimacy with NuPIC code as well as experts that wish a better productivity. Among its features and advantages:

  • Users can open, save, or change their "HTM projects" or of other developers. A typical project contains data to be trained, neural network configuration, statistics, etc, which can be shared to be analysed or integrated with other projects.
  • The HTM engine is the own original NuPIC libray (Python distribution). This means no port, no bindings, no re-implementation, etc. So any changes in the original nupic source can be immediatedly viewed. This helps users that wish test improvements like new encoders or even hierarchy, attention, and motor integration.

Screenshot

For more information, see numenta.org or the NuPIC Studio wiki.

Installation

Currently supported platforms:

  • Windows
  • Linux (32/64bit)
  • Mac OSX

Dependencies:

  • Python (2.7 or later)
  • PIP
  • NuPIC
  • NumPy
  • PyQt5

User instructions

If you want only use it, simply do this:

pip install nupic_studio

Note: Dear *nix users, if you get a "permission denied" error when using pip, you may add the --user flag to install to a location in your home directory, which should resolve any permissions issues. Doing this, you may need to add this location to your PATH and PYTHONPATH. Alternatively, you can run pip with 'sudo'.

Once it is installed, you can execute the app using:

nupic_studio

and then click on Open Project button to open any example to getting started with NuPIC.

Developer instructions

If you want develop, debug, or simply test NuPIC Studio, clone it and follow the instructions:

Using command line

This assumes the NUPIC_STUDIO environment variable is set to the directory where the NuPIC Studio source code exists.

cd $NUPIC_STUDIO
python setup.py build
python setup.py develop

Using an IDE

The following instructions will work in the most Python IDEs:

  • Open your IDE.
  • Open a project specifying the $NUPIC_STUDIO repository folder as location.
  • Click with mouse right button on setup.py file listed on project files and select Run command on pop-up menu. This will call the build process. Check output panel to see the result.
  • If the build was successful, just click on program.py and voilà!

If you don't have a favourite Python IDE, this article can help you to choose one: http://pedrokroger.net/choosing-best-python-ide/

Owner
HTM Community
Home for community-led HTM repositories.
HTM Community
Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers

Panoptic SegFormer: Delving Deeper into Panoptic Segmentation with Transformers Results results on COCO val Backbone Method Lr Schd PQ Config Download

155 Dec 20, 2022
Semi-supevised Semantic Segmentation with High- and Low-level Consistency

Semi-supevised Semantic Segmentation with High- and Low-level Consistency This Pytorch repository contains the code for our work Semi-supervised Seman

123 Dec 30, 2022
Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

Official repository for GCR rerank, a GCN-based reranking method for both image and video re-ID

53 Nov 22, 2022
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
Face Mask Detector by live camera using tensorflow-keras, openCV and Python

Face Mask Detector 😷 by Live Camera Detecting masked or unmasked faces by live camera with percentange of mask occupation About Project: This an Arti

Karan Shingde 2 Apr 04, 2022
Few-shot Learning of GPT-3

Few-shot Learning With Language Models This is a codebase to perform few-shot "in-context" learning using language models similar to the GPT-3 paper.

Tony Z. Zhao 224 Dec 28, 2022
This repository is the official implementation of Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning (NeurIPS21).

Core-tuning This repository is the official implementation of ``Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regular

vanint 18 Dec 17, 2022
Code for "The Box Size Confidence Bias Harms Your Object Detector"

The Box Size Confidence Bias Harms Your Object Detector - Code Disclaimer: This repository is for research purposes only. It is designed to maintain r

Johannes G. 24 Dec 07, 2022
[CVPR 2016] Unsupervised Feature Learning by Image Inpainting using GANs

Context Encoders: Feature Learning by Inpainting CVPR 2016 [Project Website] [Imagenet Results] Sample results on held-out images: This is the trainin

Deepak Pathak 829 Dec 31, 2022
Tiny Kinetics-400 for test

Kinetics-400迷你数据集 English | 简体中文 该数据集旨在解决的问题:参照Kinetics-400数据格式,训练基于自己数据的视频理解模型。 数据集介绍 Kinetics-400是视频领域benchmark常用数据集,详细介绍可以参考其官方网站Kinetics。整个数据集包含40

38 Jan 06, 2023
A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Factorio Blueprint Visualizer I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaki

Piet Brömmel 124 Jan 07, 2023
Per-Pixel Classification is Not All You Need for Semantic Segmentation

MaskFormer: Per-Pixel Classification is Not All You Need for Semantic Segmentation Bowen Cheng, Alexander G. Schwing, Alexander Kirillov [arXiv] [Proj

Facebook Research 1k Jan 08, 2023
Data and code for the paper "Importance of Kernel Bandwidth in Quantum Machine Learning"

Reproducibility materials for "Importance of Kernel Bandwidth in Quantum Machine Learning" Repo structure: code contains Python scripts used to genera

Ruslan Shaydulin 3 Oct 23, 2022
Hydra Lightning Template for Structured Configs

Hydra Lightning Template for Structured Configs Template for creating projects with pytorch-lightning and hydra. How to use this template? Create your

Model-driven Machine Learning 4 Jul 19, 2022
Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

Everything you need to know about NumPy( Creating Arrays, Indexing, Math,Statistics,Reshaping).

1 Feb 14, 2022
Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class.

CNNs fruits360 Train CNNs for the fruits360 data set in NTOU CS「Machine Vision」class. CNN on a pretrained model Build a CNN on a pretrained model, Res

Ricky Chuang 1 Mar 07, 2022
DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation

DynaTune: Dynamic Tensor Program Optimization in Deep Neural Network Compilation This repository is the implementation of DynaTune paper. This folder

4 Nov 02, 2022
PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation

PyGRANSO PyGRANSO: A PyTorch-enabled port of GRANSO with auto-differentiation Please check https://ncvx.org/PyGRANSO for detailed instructions (introd

SUN Group @ UMN 26 Nov 16, 2022
Pytorch implementation of MLP-Mixer with loading pre-trained models.

MLP-Mixer-Pytorch PyTorch implementation of MLP-Mixer: An all-MLP Architecture for Vision with the function of loading official ImageNet pre-trained p

Qiushi Yang 2 Sep 29, 2022
A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

A small demonstration of using WebDataset with ImageNet and PyTorch Lightning

Tom 50 Dec 16, 2022