A python library to artfully visualize Factorio Blueprints and an interactive web demo for using it.

Overview

Factorio Blueprint Visualizer

I love the game Factorio and I really like the look of factories after growing for many hours or blueprints after tweaking them for perfection. So I thought about visualizing the factories and blueprints.

All factorio buildings with their bounding boxes and belt, pipe, inserter, wire and electricity connections can be visualized. Everything is drawn in vector graphics (SVG) to be able to view it in any resolution.

The hardest part was writing the logic for connecting rails, belts and pipes. After many failed attempts with lots of bugs, I wrote a system that works pretty well. The next step was, to be able to be creative with drawing different connections and bounding boxes of buildings. Therefor, I created configurable drawing settings to experiment with and a random draw settings generator. After some tweaking, I got nice visualizations. To make the visualization tool easily accessible, I created an online demo that uses the original python code with pyodide in the browser (that's why the website might take some time to load) and an easy-to-use notebook.

Examples

The last three blueprints are by Josh Ventura and can be found here.

Usage

You can visualize your own blueprint with random drawing settings at: https://piebro.github.io/factorio-blueprint-visualizer (You can use the arrow keys for going through the visualization). You can use the notebook, if you want to create your own drawing settings or tinker some more. For an easy setup, you can open the example notebook in colab or binder. You can find many blueprints at: https://factorioprints.com.

Open In Colab Binder

Drawing Settings

To visualize a blueprint you need drawing settings that define what is drawn, in which order and in what kind of style. Drawing settings are a list of option that are executed one after the other. You can decide which bounding box to draw with an allow or deny list of building names. You can also draw connected belt, underground-belts, pipes, underground-pipes, inserter, rail, electricity, red-circuits and green-circuits.

Furthermore, you can define the style of each drawing command or set a new default drawing style. You can use fill, stroke, stroke-width, stroke-linecap, stroke-opacity, fill-opacity, bbox-scale, bbox-rx and bbox-ry as properties and every SVG tag should also work.

Every visualization has the used drawing settings and blueprint saved with it, so you can check out the drawing settings of the examples blueprints inspiration.

Pen Plotting

I have a pen plotter, and one of my initial ideas was also to be able to plot my factories. You can create visualizations you can easily draw. I recommend using https://github.com/abey79/vpype for merging lines together before plotting. An example of a visualization for plotting is here:

verilog2factorio

It's possible to use https://github.com/redcrafter/verilog2factorio to create factorio verilog blueprints and visualize the buildings and wire connections like this.

Convert to PNGs

To easily convert all SVGs in a folder, you can use a terminal and Inkscape like this. mkdir pngs; for f in *.svg; do inkscape -w 1000 "$f" -e "pngs/${f::-3}png"; done

Contribute

Contributions to this project are welcome. Feel free to report bugs or post ideas you have.

To update the python code for the website, you have to update the python wheel in the website folder. To update it, just run: python setup.py bdist_wheel --universal --dist-dir=website

Face Transformer for Recognition

Face-Transformer This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2). Recently there has been great interests of

Zhong Yaoyao 153 Nov 30, 2022
CSAC - Collaborative Semantic Aggregation and Calibration for Separated Domain Generalization

CSAC Introduction This repository contains the implementation code for paper: Co

ScottYuan 5 Jul 22, 2022
An implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep Neural Networks in PyTorch.

Neural Attention Distillation This is an implementation demo of the ICLR 2021 paper Neural Attention Distillation: Erasing Backdoor Triggers from Deep

Yige-Li 84 Jan 04, 2023
ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021

ManipNet: Neural Manipulation Synthesis with a Hand-Object Spatial Representation - SIGGRAPH 2021 Dataset Code Demos Authors: He Zhang, Yuting Ye, Tak

HE ZHANG 194 Dec 06, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
Official implementation of deep-multi-trajectory-based single object tracking (IEEE T-CSVT 2021).

DeepMTA_PyTorch Officical PyTorch Implementation of "Dynamic Attention-guided Multi-TrajectoryAnalysis for Single Object Tracking", Xiao Wang, Zhe Che

Xiao Wang(王逍) 7 Dec 03, 2022
torchsummaryDynamic: support real FLOPs calculation of dynamic network or user-custom PyTorch ops

torchsummaryDynamic Improved tool of torchsummaryX. torchsummaryDynamic support real FLOPs calculation of dynamic network or user-custom PyTorch ops.

Bohong Chen 1 Jan 07, 2022
Sibur challange 2021 competition - 6 place

sibur challange 2021 Решение на 6 место: https://sibur.ai-community.com/competitions/5/tasks/13 Скор 1.4066/1.4159 public/private. Архитектура - однос

Ivan 5 Jan 11, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
Viewmaker Networks: Learning Views for Unsupervised Representation Learning

Viewmaker Networks: Learning Views for Unsupervised Representation Learning Alex Tamkin, Mike Wu, and Noah Goodman Paper link: https://arxiv.org/abs/2

Alex Tamkin 31 Dec 01, 2022
Code for Towards Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games

Unifying Behavioral and Response Diversity for Open-ended Learning in Zero-sum Games How to run our algorithm? Create the new environment using: conda

MARL @ SJTU 8 Dec 27, 2022
code for Grapadora research paper experimentation

Road feature embedding selection method Code for research paper experimentation Abstract Traffic forecasting models rely on data that needs to be sens

Eric López Manibardo 0 May 26, 2022
Adversarial Self-Defense for Cycle-Consistent GANs

Adversarial Self-Defense for Cycle-Consistent GANs This is the official implementation of the CycleGAN robust to self-adversarial attacks used in pape

Dina Bashkirova 10 Oct 10, 2022
PyTorchVideo is a deeplearning library with a focus on video understanding work

PyTorchVideo is a deeplearning library with a focus on video understanding work. PytorchVideo provides resusable, modular and efficient components needed to accelerate the video understanding researc

Facebook Research 2.7k Jan 07, 2023
A PyTorch toolkit for 2D Human Pose Estimation.

PyTorch-Pose PyTorch-Pose is a PyTorch implementation of the general pipeline for 2D single human pose estimation. The aim is to provide the interface

Wei Yang 1.1k Dec 30, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
In-place Parallel Super Scalar Samplesort (IPS⁴o)

In-place Parallel Super Scalar Samplesort (IPS⁴o) This is the implementation of the algorithm IPS⁴o presented in the paper Engineering In-place (Share

82 Dec 22, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Multispectral Object Detection with Yolov5

Multispectral-Object-Detection Intro Official Code for Cross-Modality Fusion Transformer for Multispectral Object Detection. Multispectral Object Dete

Richard Fang 121 Jan 01, 2023