The MLOps platform for innovators 🚀

Overview

The official DS2.ai SDK for Python.
Documentation can be found on SDK guide

MLOps with DS2.ai

DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training dataset through data labeling, and enables automatic development of artificial intelligence and easy deployment and operation. ​ The Software Development Kit (SDK) consists of python functions that allow you to write your own scripts by accessing DS2.ai's features. ​ Screen_Shot_2021-07-01_at_3 37 53_PM

Installation

​ ​ Install via pip: ​

$ pip install ds2ai

​ ​

Getting started

​ ​

1. Getting your own token

​ To use the SDK, you need to get a token, and you can check the token by registering as a member of ds2.ai. After registering the card on the site, you can use the token.

​ ### 2. Activate ​ To use SDK function code, you have to activate your code, first. ​ Run the below code with your own app token. ​ ```python import ds2ai ​ ds2 = ds2ai.DS2(token) ``` ​ Then you can use all functions in [SDK guide](https://docs.ds2.ai/sdk_00_readme/) ​ --- ​ ## Top 5 Features of [DS2.ai](https://ds2.ai/) SDK ​ ​ The SDK is composed of 16 classes. Class DS2 provides python functions that are more generally used for AI development, whereas the others provide specific functions for each detailed steps in AI development. ​ Here, we want to explain to you examples of using **Top5 function codes that are usable and easy to use.** ​ ​ ### 1. Auto Labeling ​ ```python ds2.start_auto_labeling(data_file, amount, has_label_data=False, predict_column_name=None, frame=60, ai_type="general", autolabeling_type="box", general_ai_type="person", model_id=None, custom_ai_stage=0, preprocessing_ai_type={}, labeling_class=[], training_method="object_detection", name='', description='' )

​ ### 2. AI Training ​ ```python ds2.train(data_file, training_method, value_for_predict, option="accuracy", frame=60) ">

This function executes auto-labeling immediately from loading data file without using dataconnector. The major parameters include data_file to auto-label, whether the data includes labeled data for a certain part of the dataset, and the type of auto-labeling, such as “box”, which will label using bounding boxes.
​


​ ### 2. AI Training ​ ```python ds2.train(data_file, training_method, value_for_predict, option="accuracy", frame=60)

This function executes development of AI from CLICK AI in DS2.ai’s console immediately from loading data file without using dataconnector. According to what parameters you use when calling the function, such as data_file, training_method, value_for_predict, and option, it will generate your customized AI models.

3. Deploy your AI model

ds2.deploy(model_file, name=None, cloud_type="AWS", region="us-west-1", server_type="g4dn.xlarge")

This function deploys AI models to cloud servers with specifications under the desired hosting region. The type of the cloud server is set to “AWS” as default, but keep in mind that it also supports other cloud services such as Google Cloud. For the use of servers other than AWS, please visit our website and contact our team.


​ ### 4. Getting magic code ​ ```python ds2.get_magic_code(training_method, data_file, value_for_predict) ```

This function returns a the magic code for setting variable values with optimal combinations for AI training. As with the three functions above, it takes the data_file, training_method, value_for_predict as input so that after running the function, a magic code with the whole process of AI training is returned. ​

5. Rent AI training server

ds2.rent_custom_training_server(cloud_type="AWS", region="us-west-1", server_type="g4dn.xlarge", name=None)

This function rents an inference training server in preferred cloud environment for Custom training of Click AI. The type of the cloud server is set to “AWS” as default, but keep in mind that it also supports other cloud services such as Google Cloud. For the use of servers other than AWS, please visit our website and contact our team.


Getting Help

​ You can interact with the ds2ai code or software by asking a question or referencing the guide from the underlying open resources. ​

License

​ This SDK is distributed under the Apache-2.0 License, please see LICENSE for more information. ​


CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
Quantization library for PyTorch. Support low-precision and mixed-precision quantization, with hardware implementation through TVM.

HAWQ: Hessian AWare Quantization HAWQ is an advanced quantization library written for PyTorch. HAWQ enables low-precision and mixed-precision uniform

Zhen Dong 293 Dec 30, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022
Adversarial Color Enhancement: Generating Unrestricted Adversarial Images by Optimizing a Color Filter

ACE Please find the preliminary version published at BMVC 2020 in the folder BMVC_version, and its extended journal version in Journal_version. Datase

28 Dec 25, 2022
Large-scale open domain KNOwledge grounded conVERsation system based on PaddlePaddle

Knover Knover is a toolkit for knowledge grounded dialogue generation based on PaddlePaddle. Knover allows researchers and developers to carry out eff

607 Dec 31, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
A PyTorch Toolbox for Face Recognition

FaceX-Zoo FaceX-Zoo is a PyTorch toolbox for face recognition. It provides a training module with various supervisory heads and backbones towards stat

JDAI-CV 1.6k Jan 06, 2023
A curated (most recent) list of resources for Learning with Noisy Labels

A curated (most recent) list of resources for Learning with Noisy Labels

Jiaheng Wei 321 Jan 09, 2023
OpenDILab RL Kubernetes Custom Resource and Operator Lib

DI Orchestrator DI Orchestrator is designed to manage DI (Decision Intelligence) jobs using Kubernetes Custom Resource and Operator. Prerequisites A w

OpenDILab 205 Dec 29, 2022
Music library streaming app written in Flask & VueJS

djtaytay This is a little toy app made to explore Vue, brush up on my Python, and make a remote music collection accessable through a web interface. I

Ryan Tasson 6 May 27, 2022
Charsiu: A transformer-based phonetic aligner

Charsiu: A transformer-based phonetic aligner [arXiv] Note. This is a preview version. The aligner is under active development. New functions, new lan

jzhu 166 Dec 09, 2022
Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Robust Video Matting in PyTorch, TensorFlow, TensorFlow.js, ONNX, CoreML!

Peter Lin 6.5k Jan 04, 2023
Emblaze - Interactive Embedding Comparison

Emblaze - Interactive Embedding Comparison Emblaze is a Jupyter notebook widget for visually comparing embeddings using animated scatter plots. It bun

CMU Data Interaction Group 77 Nov 24, 2022
PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

PointCloud Annotation Tools, support to label object bound box, ground, lane and kerb

halo 368 Dec 06, 2022
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
code release for USENIX'22 paper `On the Security Risks of AutoML`

This project is a minimized runnable project cut from trojanzoo, which contains more datasets, models, attacks and defenses. This repo will not be mai

Ren Pang 5 Apr 19, 2022
Unofficial PyTorch implementation of Guided Dropout

Unofficial PyTorch implementation of Guided Dropout This is a simple implementation of Guided Dropout for research. We try to reproduce the algorithm

2 Jan 07, 2022
Source code for "MusCaps: Generating Captions for Music Audio" (IJCNN 2021)

MusCaps: Generating Captions for Music Audio Ilaria Manco1 2, Emmanouil Benetos1, Elio Quinton2, Gyorgy Fazekas1 1 Queen Mary University of London, 2

Ilaria Manco 57 Dec 07, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022