The MLOps platform for innovators 🚀

Overview

The official DS2.ai SDK for Python.
Documentation can be found on SDK guide

MLOps with DS2.ai

DS2.ai is an integrated AI operation solution that supports all stages from custom AI development to deployment. It is an AI-specialized platform service that collects data, builds a training dataset through data labeling, and enables automatic development of artificial intelligence and easy deployment and operation. ​ The Software Development Kit (SDK) consists of python functions that allow you to write your own scripts by accessing DS2.ai's features. ​ Screen_Shot_2021-07-01_at_3 37 53_PM

Installation

​ ​ Install via pip: ​

$ pip install ds2ai

​ ​

Getting started

​ ​

1. Getting your own token

​ To use the SDK, you need to get a token, and you can check the token by registering as a member of ds2.ai. After registering the card on the site, you can use the token.

​ ### 2. Activate ​ To use SDK function code, you have to activate your code, first. ​ Run the below code with your own app token. ​ ```python import ds2ai ​ ds2 = ds2ai.DS2(token) ``` ​ Then you can use all functions in [SDK guide](https://docs.ds2.ai/sdk_00_readme/) ​ --- ​ ## Top 5 Features of [DS2.ai](https://ds2.ai/) SDK ​ ​ The SDK is composed of 16 classes. Class DS2 provides python functions that are more generally used for AI development, whereas the others provide specific functions for each detailed steps in AI development. ​ Here, we want to explain to you examples of using **Top5 function codes that are usable and easy to use.** ​ ​ ### 1. Auto Labeling ​ ```python ds2.start_auto_labeling(data_file, amount, has_label_data=False, predict_column_name=None, frame=60, ai_type="general", autolabeling_type="box", general_ai_type="person", model_id=None, custom_ai_stage=0, preprocessing_ai_type={}, labeling_class=[], training_method="object_detection", name='', description='' )

​ ### 2. AI Training ​ ```python ds2.train(data_file, training_method, value_for_predict, option="accuracy", frame=60) ">

This function executes auto-labeling immediately from loading data file without using dataconnector. The major parameters include data_file to auto-label, whether the data includes labeled data for a certain part of the dataset, and the type of auto-labeling, such as “box”, which will label using bounding boxes.
​


​ ### 2. AI Training ​ ```python ds2.train(data_file, training_method, value_for_predict, option="accuracy", frame=60)

This function executes development of AI from CLICK AI in DS2.ai’s console immediately from loading data file without using dataconnector. According to what parameters you use when calling the function, such as data_file, training_method, value_for_predict, and option, it will generate your customized AI models.

3. Deploy your AI model

ds2.deploy(model_file, name=None, cloud_type="AWS", region="us-west-1", server_type="g4dn.xlarge")

This function deploys AI models to cloud servers with specifications under the desired hosting region. The type of the cloud server is set to “AWS” as default, but keep in mind that it also supports other cloud services such as Google Cloud. For the use of servers other than AWS, please visit our website and contact our team.


​ ### 4. Getting magic code ​ ```python ds2.get_magic_code(training_method, data_file, value_for_predict) ```

This function returns a the magic code for setting variable values with optimal combinations for AI training. As with the three functions above, it takes the data_file, training_method, value_for_predict as input so that after running the function, a magic code with the whole process of AI training is returned. ​

5. Rent AI training server

ds2.rent_custom_training_server(cloud_type="AWS", region="us-west-1", server_type="g4dn.xlarge", name=None)

This function rents an inference training server in preferred cloud environment for Custom training of Click AI. The type of the cloud server is set to “AWS” as default, but keep in mind that it also supports other cloud services such as Google Cloud. For the use of servers other than AWS, please visit our website and contact our team.


Getting Help

​ You can interact with the ds2ai code or software by asking a question or referencing the guide from the underlying open resources. ​

License

​ This SDK is distributed under the Apache-2.0 License, please see LICENSE for more information. ​


This repository contains code and data for "On the Multimodal Person Verification Using Audio-Visual-Thermal Data"

trimodal_person_verification This repository contains the code, and preprocessed dataset featured in "A Study of Multimodal Person Verification Using

ISSAI 7 Aug 31, 2022
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
ThunderGBM: Fast GBDTs and Random Forests on GPUs

Documentations | Installation | Parameters | Python (scikit-learn) interface What's new? ThunderGBM won 2019 Best Paper Award from IEEE Transactions o

Xtra Computing Group 647 Jan 04, 2023
Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents

DeepXML Code for DeepXML: A Deep Extreme Multi-Label Learning Framework Applied to Short Text Documents Architectures and algorithms DeepXML supports

Extreme Classification 49 Nov 06, 2022
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
PyTorch implementation of PP-LCNet: A Lightweight CPU Convolutional Neural Network

PyTorch implementation of PP-LCNet Reproduction of PP-LCNet architecture as described in PP-LCNet: A Lightweight CPU Convolutional Neural Network by C

Quan Nguyen (Fly) 47 Nov 02, 2022
Official implementation of "StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation" (SIGGRAPH 2021)

StyleCariGAN: Caricature Generation via StyleGAN Feature Map Modulation This repository contains the official PyTorch implementation of the following

Wonjong Jang 270 Dec 30, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
[CVPR 2022 Oral] MixFormer: End-to-End Tracking with Iterative Mixed Attention

MixFormer The official implementation of the CVPR 2022 paper MixFormer: End-to-End Tracking with Iterative Mixed Attention [Models and Raw results] (G

Multimedia Computing Group, Nanjing University 235 Jan 03, 2023
Download files from DSpace systems (because for some reason DSpace won't let you)

DSpaceDL A tool for downloading files from DSpace items. For some reason, DSpace systems have a dogshit UI, and Universities absolutely LOOOVE to use

Soumitra Shewale 5 Dec 01, 2022
Simple and ready-to-use tutorials for TensorFlow

TensorFlow World To support maintaining and upgrading this project, please kindly consider Sponsoring the project developer. Any level of support is a

Amirsina Torfi 4.5k Dec 23, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED)

osed-scripts bespoke tooling for offensive security's Windows Usermode Exploit Dev course (OSED) Table of Contents Standalone Scripts egghunter.py fin

epi 268 Jan 05, 2023
Bulk2Space is a spatial deconvolution method based on deep learning frameworks

Bulk2Space Spatially resolved single-cell deconvolution of bulk transcriptomes using Bulk2Space Bulk2Space is a spatial deconvolution method based on

Dr. FAN, Xiaohui 60 Dec 27, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 832 Jan 08, 2023
Hough Transform and Hough Line Transform Using OpenCV

Hough transform is a feature extraction method for detecting simple shapes such as circles, lines, etc in an image. Hough Transform and Hough Line Transform is implemented in OpenCV with two methods;

Happy N. Monday 3 Feb 15, 2022
Some simple programs built in Python: webcam with cv2 that detects eyes and face, with grayscale filter

Programas en Python Algunos programas simples creados en Python: 📹 Webcam con c

Madirex 1 Feb 15, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
Lightweight library to build and train neural networks in Theano

Lasagne Lasagne is a lightweight library to build and train neural networks in Theano. Its main features are: Supports feed-forward networks such as C

Lasagne 3.8k Dec 29, 2022