A curated (most recent) list of resources for Learning with Noisy Labels

Overview

Learning-with-Noisy-Labels

A curated list of most recent papers & codes in Learning with Noisy Labels


Papers & Code in 2021

This repo focus on papers after 2019, for previous works, please refer to (https://github.com/subeeshvasu/Awesome-Learning-with-Label-Noise).

ICML 2021

Conference date: Jul 18, 2021 -- Jul 24, 2021

  • [UCSC REAL Lab] The importance of understanding instance-level noisy labels. [Paper]
  • [UCSC REAL Lab] Clusterability as an Alternative to Anchor Points When Learning with Noisy Labels. [Paper][Code]
  • Scaling Up Visual and Vision-Language Representation Learning With Noisy Text Supervision. [Paper][Code]
  • Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization. [Paper][Code]
  • Class2Simi: A Noise Reduction Perspective on Learning with Noisy Labels. [Paper]
  • Provably End-to-end Label-noise Learning without Anchor Points. [Paper]
  • Asymmetric Loss Functions for Learning with Noisy Labels. [Paper][Code]
  • Confidence Scores Make Instance-dependent Label-noise Learning Possible. [Paper]
  • Provable Generalization of SGD-trained Neural Networks of Any Width in the Presence of Adversarial Label Noise. [Paper]
  • Wasserstein Distributional Normalization For Robust Distributional Certification of Noisy Labeled Data. [Paper]
  • Learning from Noisy Labels with No Change to the Training Process. [Paper]

ICLR 2021

  • [UCSC REAL Lab] When Optimizing f-Divergence is Robust with Label Noise. [Paper][Code]
  • [UCSC REAL Lab] Learning with Instance-Dependent Label Noise: A Sample Sieve Approach. [Paper][Code]
  • Noise against noise: stochastic label noise helps combat inherent label noise. [Paper][Code]
  • Learning with Feature-Dependent Label Noise: A Progressive Approach. [Paper][Code]
  • Robust early-learning: Hindering the memorization of noisy labels. [Paper][Code]
  • MoPro: Webly Supervised Learning with Momentum Prototypes. [Paper] [Code]
  • Robust Curriculum Learning: from clean label detection to noisy label self-correction. [Paper]
  • How Does Mixup Help With Robustness and Generalization? [Paper]
  • Theoretical Analysis of Self-Training with Deep Networks on Unlabeled Data. [Paper]

CVPR 2021

Conference date: Jun 19, 2021 -- Jun 25, 2021

  • [UCSC REAL Lab] A Second-Order Approach to Learning with Instance-Dependent Label Noise. [Paper][Code]
  • Improving Unsupervised Image Clustering With Robust Learning. [Paper]
  • Multi-Objective Interpolation Training for Robustness to Label Noise. [Paper][Code]
  • Noise-resistant Deep Metric Learning with Ranking-based Instance Selection. [Paper][Code]
  • Augmentation Strategies for Learning with Noisy Labels. [Paper][Code]
  • Jo-SRC: A Contrastive Approach for Combating Noisy Labels. [Paper][Code]
  • Multi-Objective Interpolation Training for Robustness to Label Noise. [Paper][Code]
  • Partially View-aligned Representation Learning with Noise-robust Contrastive Loss. [Paper][Code]
  • Correlated Input-Dependent Label Noise in Large-Scale Image Classification. [Paper]
  • DAT: Training Deep Networks Robust To Label-Noise by Matching the Feature Distributions.[Paper]
  • Faster Meta Update Strategy for Noise-Robust Deep Learning. [Paper][Code]
  • DualGraph: A graph-based method for reasoning about label noise. [Paper]
  • Background-Aware Pooling and Noise-Aware Loss for Weakly-Supervised Semantic Segmentation. [Paper]
  • Joint Negative and Positive Learning for Noisy Labels. [Paper]
  • Faster Meta Update Strategy for Noise-Robust Deep Learning. [Paper]
  • AutoDO: Robust AutoAugment for Biased Data with Label Noise via Scalable Probabilistic Implicit Differentiation. [Paper][Code]
  • Meta Pseudo Labels. [Paper][Code]
  • All Labels Are Not Created Equal: Enhancing Semi-supervision via Label Grouping and Co-training. [Paper][Code]
  • SimPLE: Similar Pseudo Label Exploitation for Semi-Supervised Classification. [Paper][Code]

AISTATS 2021

Conference date: Apr 13, 2021 -- Apr 15, 2021

  • Collaborative Classification from Noisy Labels. [Paper]
  • Linear Models are Robust Optimal Under Strategic Behavior. [Paper]

AAAI 2021

  • Beyond Class-Conditional Assumption: A Primary Attempt to Combat Instance-Dependent Label Noise. [Paper][Code]
  • Learning to Purify Noisy Labels via Meta Soft Label Corrector. [Paper][Code]
  • Robustness of Accuracy Metric and its Inspirations in Learning with Noisy Labels. [Paper][Code]
  • Learning from Noisy Labels with Complementary Loss Functions. [Paper][Code]
  • Analysing the Noise Model Error for Realistic Noisy Label Data. [Paper][Code]
  • Tackling Instance-Dependent Label Noise via a Universal Probabilistic Model. [Paper]
  • Learning with Group Noise. [Paper]
  • Meta Label Correction for Noisy Label Learning. [Paper]

ArXiv 2021

  • [UCSC REAL Lab] Understanding (Generalized) Label Smoothing when Learning with Noisy Labels. [Paper]
  • Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks. [Paper][Code]
  • Estimating Instance-dependent Label-noise Transition Matrix using DNNs. [Paper]
  • A Theoretical Analysis of Learning with Noisily Labeled Data. [Paper]
  • Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels. [Paper]
  • A Survey of Label-noise Representation Learning: Past, Present and Future. [Paper]
  • Learning Noise Transition Matrix from Only Noisy Labels via Total Variation Regularization. [Paper][Code]
  • Noisy-Labeled NER with Confidence Estimation. [Paper][Code]
  • Study Group Learning: Improving Retinal Vessel Segmentation Trained with Noisy Labels. [Paper][Code]
  • Contrast to Divide: Self-Supervised Pre-Training for Learning with Noisy Labels. [Paper][Code]
  • Exponentiated Gradient Reweighting for Robust Training Under Label Noise and Beyond. [Paper]
  • Understanding the Interaction of Adversarial Training with Noisy Labels. [Paper]
  • Learning from Noisy Labels via Dynamic Loss Thresholding. [Paper]
  • Evaluating Multi-label Classifiers with Noisy Labels. [Paper]
  • Self-Supervised Noisy Label Learning for Source-Free Unsupervised Domain Adaptation. [Paper]
  • Transform consistency for learning with noisy labels. [Paper]
  • Learning to Combat Noisy Labels via Classification Margins. [Paper]
  • Joint Negative and Positive Learning for Noisy Labels. [Paper]
  • Robust Classification from Noisy Labels: Integrating Additional Knowledge for Chest Radiography Abnormality Assessment. [Paper]
  • DST: Data Selection and joint Training for Learning with Noisy Labels. [Paper]
  • LongReMix: Robust Learning with High Confidence Samples in a Noisy Label Environment. [Paper]
  • A Novel Perspective for Positive-Unlabeled Learning via Noisy Labels. [Paper]
  • Ensemble Learning with Manifold-Based Data Splitting for Noisy Label Correction. [Paper]
  • MetaLabelNet: Learning to Generate Soft-Labels from Noisy-Labels. [Paper]
  • On the Robustness of Monte Carlo Dropout Trained with Noisy Labels. [Paper]
  • Co-matching: Combating Noisy Labels by Augmentation Anchoring. [Paper]
  • Pathological Image Segmentation with Noisy Labels. [Paper]
  • CrowdTeacher: Robust Co-teaching with Noisy Answers & Sample-specific Perturbations for Tabular Data. [Paper]
  • Approximating Instance-Dependent Noise via Instance-Confidence Embedding. [Paper]
  • Rethinking Noisy Label Models: Labeler-Dependent Noise with Adversarial Awareness. [Paper]
  • ScanMix: Learning from Severe Label Noise viaSemantic Clustering and Semi-Supervised Learning. [Paper]
  • Friends and Foes in Learning from Noisy Labels. [Paper]
  • Learning from Noisy Labels for Entity-Centric Information Extraction. [Paper]
  • A Fremework Using Contrastive Learning for Classification with Noisy Labels. [Paper]
  • Contrastive Learning Improves Model Robustness Under Label Noise. [Paper][Code]
  • Noise-Resistant Deep Metric Learning with Probabilistic Instance Filtering. [Paper]
  • Compensation Learning. [Paper]
  • kNet: A Deep kNN Network To Handle Label Noise. [Paper]
  • Temporal-aware Language Representation Learning From Crowdsourced Labels. [Paper]
  • Memorization in Deep Neural Networks: Does the Loss Function matter?. [Paper]
  • Mitigating Memorization in Sample Selection for Learning with Noisy Labels. [Paper]
  • P-DIFF: Learning Classifier with Noisy Labels based on Probability Difference Distributions. [Paper][Code]
  • Decoupling Representation and Classifier for Noisy Label Learning. [Paper]
  • Contrastive Representations for Label Noise Require Fine-Tuning. [Paper]
  • NGC: A Unified Framework for Learning with Open-World Noisy Data. [Paper]
  • Learning From Long-Tailed Data With Noisy Labels. [Paper]
  • Robust Long-Tailed Learning Under Label Noise. [Paper]
  • Instance-dependent Label-noise Learning under a Structural Causal Model. [Paper]
  • Assessing the Quality of the Datasets by Identifying Mislabeled Samples. [Paper]
  • Learning to Aggregate and Refine Noisy Labels for Visual Sentiment Analysis. [Paper]
  • Assessing the Quality of the Datasets by Identifying Mislabeled Samples. [Paper]

Papers & Code in 2020


ICML 2020

  • [UCSC REAL Lab] Peer Loss Functions: Learning from Noisy Labels without Knowing Noise Rates. [Paper][Code 1] [Code 2]
  • Normalized Loss Functions for Deep Learning with Noisy Labels. [Paper][Code]
  • SIGUA: Forgetting May Make Learning with Noisy Labels More Robust. [Paper][Code]
  • Error-Bounded Correction of Noisy Labels. [Paper][Code]
  • Training Binary Neural Networks through Learning with Noisy Supervision. [Paper][Code]
  • Improving generalization by controlling label-noise information in neural network weights. [Paper][Code]
  • Self-PU: Self Boosted and Calibrated Positive-Unlabeled Training. [Paper][Code]
  • Searching to Exploit Memorization Effect in Learning with Noisy Labels. [Paper][Code]
  • Learning with Bounded Instance and Label-dependent Label Noise. [Paper]
  • Label-Noise Robust Domain Adaptation. [Paper]
  • Beyond Synthetic Noise: Deep Learning on Controlled Noisy Labels. [Paper]
  • Does label smoothing mitigate label noise?. [Paper]
  • Learning with Multiple Complementary Labels. [Paper]
  • Deep k-NN for Noisy Labels. [Paper]
  • Extreme Multi-label Classification from Aggregated Labels. [Paper]

ICLR 2020

  • DivideMix: Learning with Noisy Labels as Semi-supervised Learning. [Paper][Code]
  • Learning from Rules Generalizing Labeled Exemplars. [Paper] [Code]
  • Robust training with ensemble consensus. [Paper][Code]
  • Self-labelling via simultaneous clustering and representation learning. [Paper][Code]
  • Can gradient clipping mitigate label noise? [Paper][Code]
  • Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification. [Paper][Code]
  • Curriculum Loss: Robust Learning and Generalization against Label Corruption. [Paper]
  • Simple and Effective Regularization Methods for Training on Noisily Labeled Data with Generalization Guarantee. [Paper]
  • SELF: Learning to Filter Noisy Labels with Self-Ensembling. [Paper]

Nips 2020

  • Part-dependent Label Noise: Towards Instance-dependent Label Noise. [Paper][Code]
  • Identifying Mislabeled Data using the Area Under the Margin Ranking. [Paper][Code]
  • Dual T: Reducing Estimation Error for Transition Matrix in Label-noise Learning. [Paper]
  • Early-Learning Regularization Prevents Memorization of Noisy Labels. [Paper][Code]
  • Coresets for Robust Training of Deep Neural Networks against Noisy Labels. [Paper][Code]
  • Modeling Noisy Annotations for Crowd Counting. [Paper][Code]
  • Robust Optimization for Fairness with Noisy Protected Groups. [Paper][Code]
  • Stochastic Optimization with Heavy-Tailed Noise via Accelerated Gradient Clipping. [Paper][Code]
  • A Topological Filter for Learning with Label Noise. [Paper][Code]
  • Self-Adaptive Training: beyond Empirical Risk Minimization. [Paper][Code]
  • Disentangling Human Error from the Ground Truth in Segmentation of Medical Images. [Paper][Code]
  • Non-Convex SGD Learns Halfspaces with Adversarial Label Noise. [Paper]
  • Efficient active learning of sparse halfspaces with arbitrary bounded noise. [Paper]
  • Semi-Supervised Partial Label Learning via Confidence-Rated Margin Maximization. [Paper]
  • Labelling unlabelled videos from scratch with multi-modal self-supervision. [Paper][Code]
  • Distribution Aligning Refinery of Pseudo-label for Imbalanced Semi-supervised Learning. [Paper][Code]
  • MetaPoison: Practical General-purpose Clean-label Data Poisoning. [Paper][Code 1][Code 2]
  • Provably Consistent Partial-Label Learning. [Paper]
  • A Variational Approach for Learning from Positive and Unlabeled Data. [Paper][Code]

AAAI 2020

  • [UCSC REAL Lab] Reinforcement Learning with Perturbed Rewards. [Paper] [Code]
  • Less Is Better: Unweighted Data Subsampling via Influence Function. [Paper] [Code]
  • Weakly Supervised Sequence Tagging from Noisy Rules. [Paper][Code]
  • Coupled-View Deep Classifier Learning from Multiple Noisy Annotators. [Paper]
  • Partial multi-label learning with noisy label identification. [Paper]
  • Self-Paced Robust Learning for Leveraging Clean Labels in Noisy Data. [Paper]
  • Label Error Correction and Generation Through Label Relationships. [Paper]

CVPR 2020

  • Combating noisy labels by agreement: A joint training method with co-regularization. [Paper][Code]
  • Distilling Effective Supervision From Severe Label Noise. [Paper][Code]
  • Self-Training With Noisy Student Improves ImageNet Classification. [Paper][Code]
  • Noise Robust Generative Adversarial Networks. [Paper][Code]
  • Global-Local GCN: Large-Scale Label Noise Cleansing for Face Recognition. [Paper]
  • DLWL: Improving Detection for Lowshot Classes With Weakly Labelled Data. [Paper]
  • Spherical Space Domain Adaptation With Robust Pseudo-Label Loss. [Paper][Code]
  • Training Noise-Robust Deep Neural Networks via Meta-Learning. [Paper][Code]
  • Shoestring: Graph-Based Semi-Supervised Classification With Severely Limited Labeled Data. [Paper][Code]
  • Noise-Aware Fully Webly Supervised Object Detection. [Paper][Code]
  • Learning From Noisy Anchors for One-Stage Object Detection. [Paper][Code]
  • Generating Accurate Pseudo-Labels in Semi-Supervised Learning and Avoiding Overconfident Predictions via Hermite Polynomial Activations. [Paper][Code]
  • Revisiting Knowledge Distillation via Label Smoothing Regularization. [Paper][Code]

ECCV 2020

  • 2020-ECCV - Learning with Noisy Class Labels for Instance Segmentation. [Paper][Code]
  • 2020-ECCV - Suppressing Mislabeled Data via Grouping and Self-Attention. [Paper][Code]
  • 2020-ECCV - NoiseRank: Unsupervised Label Noise Reduction with Dependence Models. [Paper]
  • 2020-ECCV - Weakly Supervised Learning with Side Information for Noisy Labeled Images. [Paper]
  • 2020-ECCV - Learning Noise-Aware Encoder-Decoder from Noisy Labels by Alternating Back-Propagation for Saliency Detection. [Paper]
  • 2020-ECCV - Graph convolutional networks for learning with few clean and many noisy labels. [Paper]

ArXiv 2020

  • No Regret Sample Selection with Noisy Labels. [Paper][Code]
  • Meta Soft Label Generation for Noisy Labels. [Paper][Code]
  • Learning from Noisy Labels with Deep Neural Networks: A Survey. [Paper]
  • RAR-U-Net: a Residual Encoder to Attention Decoder by Residual Connections Framework for Spine Segmentation under Noisy Labels. [Paper]
  • Learning from Small Amount of Medical Data with Noisy Labels: A Meta-Learning Approach. [Paper]

Owner
Jiaheng Wei
Ph.D@ UCSC CSE
Jiaheng Wei
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
Some pvbatch (paraview) scripts for postprocessing OpenFOAM data

pvbatchForFoam Some pvbatch (paraview) scripts for postprocessing OpenFOAM data For every script there is a help message available: pvbatch pv_state_s

Morev Ilya 2 Oct 26, 2022
Public Implementation of ChIRo from "Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations"

Learning 3D Representations of Molecular Chirality with Invariance to Bond Rotations This directory contains the model architectures and experimental

35 Dec 05, 2022
Zalo AI challenge 2021 task hum to song

Zalo AI challenge 2021 task Hum to Song pipeline: Chuẩn bị dữ liệu cho quá trình train: Sửa các file đường dẫn trong config/preprocess.yaml raw_path:

Vo Van Phuc 105 Dec 16, 2022
Source code for From Stars to Subgraphs

GNNAsKernel Official code for From Stars to Subgraphs: Uplifting Any GNN with Local Structure Awareness Visualizations GNN-AK(+) GNN-AK(+) with Subgra

44 Dec 19, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Portfolio Optimization and Quantitative Strategic Asset Allocation in Python

Riskfolio-Lib Quantitative Strategic Asset Allocation, Easy for Everyone. Description Riskfolio-Lib is a library for making quantitative strategic ass

Riskfolio 1.7k Jan 07, 2023
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
StarGAN2 for practice

StarGAN2 for practice This version of StarGAN2 (coined as 'Post-modern Style Transfer') is intended mostly for fellow artists, who rarely look at scie

vadim epstein 87 Sep 24, 2022
House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent for Professional Architects

House-GAN++ Code and instructions for our paper: House-GAN++: Generative Adversarial Layout Refinement Network towards Intelligent Computational Agent

122 Dec 28, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 2021

Neural Scene Flow Fields PyTorch implementation of paper "Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes", CVPR 20

Zhengqi Li 585 Jan 04, 2023
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

318 Dec 31, 2022
tensorflow implementation of 'YOLO : Real-Time Object Detection'

YOLO_tensorflow (Version 0.3, Last updated :2017.02.21) 1.Introduction This is tensorflow implementation of the YOLO:Real-Time Object Detection It can

Jinyoung Choi 1.7k Nov 21, 2022
A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions

A distributed, plug-n-play algorithm for multi-robot applications with a priori non-computable objective functions Kapoutsis, A.C., Chatzichristofis,

Athanasios Ch. Kapoutsis 5 Oct 15, 2022
OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

Introduction English | 简体中文 MMAction2 is an open-source toolbox for video understanding based on PyTorch. It is a part of the OpenMMLab project. The m

OpenMMLab 2.7k Jan 07, 2023
Keras implementations of Generative Adversarial Networks.

This repository has gone stale as I unfortunately do not have the time to maintain it anymore. If you would like to continue the development of it as

Erik Linder-Norén 8.9k Jan 04, 2023
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Keyword spotting on Arm Cortex-M Microcontrollers

Keyword spotting for Microcontrollers This repository consists of the tensorflow models and training scripts used in the paper: Hello Edge: Keyword sp

Arm Software 1k Dec 30, 2022
LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Deep-Leafsnap Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhev

Sujith Vishwajith 48 Nov 27, 2022