Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Overview

Single Image Deraining Using Bilateral Recurrent Network

Introduction

Single image deraining has received considerable progress based on deep convolutional neural network. Most existing deep deraining methods follow residual learning in image denoising to learn rain streak layer, and perform limited in restoring background image layer. In this work, we propose bilateral recurrent network (BRN) to allow the interplay between rain streak and background image layers. In particular, two recurrent networks are coupled to simultaneously exploit these two layers. Instead of naive combination, we propose bilateral LSTMs, which not only can respectively propagate deep features across stages, but also bring the interplay between these two SRNs, which is essential in separating two layers from rainy observation. The experimental results demonstrate that our BRN notably outperforms state-of-the-art deep deraining networks on synthetic datasets quantitatively and qualitatively. The proposed method also performs more favorably in terms of generalization performance on real-world rainy dataset.

Prerequisites

  • Python 3.6, PyTorch >= 0.4.0
  • Requirements: opencv-python, tensorboardX
  • Platforms: Ubuntu 16.04, cuda-10.0 & cuDNN v-7.5
  • MATLAB for computing evaluation metrics

Datasets

SRN and BRN are evaluated on seven datasets*: Rain100H [1], Rain100L [1], RainHeavy*[5], RainLight*[5], Rain12 [2], Rain1400 [3] and SPA-data [4]. Please download the testing datasets from BaiduYun or OneDrive, download the RainHeavy*[5] and RainLight*[5] from here, and download the testing generalization dataset SPA-data [4] from GoogleDrive. And then place the unzipped folders into './datasets/'. Make sure that the path of the extracted file is consistent with '--data_path'.

*We note that:

(i) The datasets of Rain100H and Rain100L have been updated by the authors. We notate them as RainHeavy* and RainLight*, that can be downloaded from here.

(ii) We upload the old datasets of Rain100H and Rain100L to BaiduYun or OneDrive. For Rain100H, we strictly exclude 546 rainy images that have the same background contents with testing images.

Getting Started

1) Testing

We have placed our pre-trained models into ./logs/.

Run shell scripts to test the models:

bash test_RainHeavy.sh   # test models on RainHeavy
bash test_RainLight.sh   # test models on RainLight
bash test_Rain100H.sh   # test models on Rain100H
bash test_Rain100L.sh   # test models on Rain100L
bash test_Rain12.sh     # test models on Rain12
bash test_Rain1400.sh   # test models on Rain1400
bash test_real.sh       # test models on SPA-data

(i) On RainHeavy* [5] and RainLight* [5], we re-train all the competing methods. We have uploaded all the trained models to ./logs/RainHeavy/ and ./logs/RainLight/. You can use their source codes to reproduce the results in the paper.

(ii) All the results in the paper are also available at GoogleDrive. You can place the downloaded results into ./results/, and directly compute all the evaluation metrics in this paper.

2) Evaluation metrics

We also provide the MATLAB scripts to compute the average PSNR and SSIM values reported in the paper.

 cd ./statistic
 run statistic_RainHeavy.m
 run statistic_RainLight.m
 run statistic_Rain100H.m
 run statistic_Rain100L.m
 run statistic_Rain12.m
 run statistic_Rain1400.m
 run statistic_real.m

3) Training

python train.py --save_path path_to_save_trained_models  --data_path path_to_training_dataset

*If you use the new dataset by yourself, please make sure to define new function for preprocessing training patches in DerainDataset.py.

References

[1] Yang W, Tan R, Feng J, Liu J, Guo Z, and Yan S. Deep joint rain detection and removal from a single image. In IEEE CVPR 2017.

[2] Li Y, Tan RT, Guo X, Lu J, and Brown M. Rain streak removal using layer priors. In IEEE CVPR 2016.

[3] Fu X, Huang J, Zeng D, Huang Y, Ding X, and Paisley J. Removing rain from single images via a deep detail network. In IEEE CVPR 2017.

[4] Wang T, Yang X, Xu K, Chen S, Zhang Q, and Lau R. Spatial attentive single-image deraining with a high quality real rain dataset. In IEEE CVPR 2019.

[5] Yang W, Tan R, Feng J, Liu J, Yan S, and Guo Z. Joint rain detection and removal from a single image with contextualized deep networks. IEEE T-PAMI 2019.

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency

Contrastive Learning of Image Representations with Cross-Video Cycle-Consistency This is a official implementation of the CycleContrast introduced in

13 Nov 14, 2022
Implementation for "Exploiting Aliasing for Manga Restoration" (CVPR 2021)

[CVPR Paper](To appear) | [Project Website](To appear) | BibTex Introduction As a popular entertainment art form, manga enriches the line drawings det

133 Dec 15, 2022
NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring

NudeNet: Neural Nets for Nudity Classification, Detection and selective censoring Uncensored version of the following image can be found at https://i.

notAI.tech 1.1k Dec 29, 2022
Lecture materials for Cornell CS5785 Applied Machine Learning (Fall 2021)

Applied Machine Learning (Cornell CS5785, Fall 2021) This repo contains executable course notes and slides for the Applied ML course at Cornell and Co

Volodymyr Kuleshov 103 Dec 31, 2022
git《Beta R-CNN: Looking into Pedestrian Detection from Another Perspective》(NeurIPS 2020) GitHub:[fig3]

Beta R-CNN: Looking into Pedestrian Detection from Another Perspective This is the pytorch implementation of our paper "[Beta R-CNN: Looking into Pede

35 Sep 08, 2021
Deep learning algorithms for muon momentum estimation in the CMS Trigger System

Deep learning algorithms for muon momentum estimation in the CMS Trigger System The Compact Muon Solenoid (CMS) is a general-purpose detector at the L

anuragB 2 Oct 06, 2021
JDet is Object Detection Framework based on Jittor.

JDet is Object Detection Framework based on Jittor.

135 Dec 14, 2022
Official PyTorch implementation of the paper: DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample

DeepSIM: Image Shape Manipulation from a Single Augmented Training Sample (ICCV 2021 Oral) Project | Paper Official PyTorch implementation of the pape

Eliahu Horwitz 393 Dec 22, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Source code for paper "Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling", AAAI 2021

ATLOP Code for AAAI 2021 paper Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling. If you make use of this co

Wenxuan Zhou 146 Nov 29, 2022
Add gui for YoloV5 using PyQt5

HEAD 更新2021.08.16 **添加图片和视频保存功能: 1.图片和视频按照当前系统时间进行命名 2.各自检测结果存放入output文件夹 3.摄像头检测的默认设备序号更改为0,减少调试报错 温馨提示: 1.项目放置在全英文路径下,防止项目报错 2.默认使用cpu进行检测,自

Ruihao Wang 65 Dec 27, 2022
A simple tutoral for error correction task, based on Pytorch

gramcorrector A simple tutoral for error correction task, based on Pytorch Grammatical Error Detection (sentence-level) a binary sequence-based classi

peiyuan_gong 8 Dec 03, 2022
Analysis of Smiles through reservoir sampling & RDkit

Analysis of Smiles through reservoir sampling and machine learning (under development). This is a simple project that includes two Jupyter files for t

Aurimas A. Nausėdas 6 Aug 30, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022
Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL"

Sample Code for "Pessimism Meets Invariance: Provably Efficient Offline Mean-Field Multi-Agent RL" This is the official codebase for Pessimism Meets I

3 Sep 19, 2022
Aydin is a user-friendly, feature-rich, and fast image denoising tool

Aydin is a user-friendly, feature-rich, and fast image denoising tool that provides a number of self-supervised, auto-tuned, and unsupervised image denoising algorithms.

Royer Lab 99 Dec 14, 2022
Provide baselines and evaluation metrics of the task: traffic flow prediction

Note: This repo is adpoted from https://github.com/UNIMIBInside/Smart-Mobility-Prediction. Due to technical reasons, I did not fork their code. Introd

Zhangzhi Peng 11 Nov 02, 2022
PyTorch code for our paper "Attention in Attention Network for Image Super-Resolution"

Under construction... Attention in Attention Network for Image Super-Resolution (A2N) This repository is an PyTorch implementation of the paper "Atten

Haoyu Chen 71 Dec 30, 2022
[CVPR 2022 Oral] Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning (CVPR 2022 Oral) 2022-03-29: The paper was selected as a CVPR 2022 Oral paper! 2

249 Dec 28, 2022
CS_Final_Metal_surface_detection - This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021.

CS_Final_Metal_surface_detection This is a final project for CoderSchool Machine Learning bootcamp on 29/12/2021. The project is based on the dataset

Cuong Vo 1 Dec 29, 2021