Single Image Deraining Using Bilateral Recurrent Network (TIP 2020)

Overview

Single Image Deraining Using Bilateral Recurrent Network

Introduction

Single image deraining has received considerable progress based on deep convolutional neural network. Most existing deep deraining methods follow residual learning in image denoising to learn rain streak layer, and perform limited in restoring background image layer. In this work, we propose bilateral recurrent network (BRN) to allow the interplay between rain streak and background image layers. In particular, two recurrent networks are coupled to simultaneously exploit these two layers. Instead of naive combination, we propose bilateral LSTMs, which not only can respectively propagate deep features across stages, but also bring the interplay between these two SRNs, which is essential in separating two layers from rainy observation. The experimental results demonstrate that our BRN notably outperforms state-of-the-art deep deraining networks on synthetic datasets quantitatively and qualitatively. The proposed method also performs more favorably in terms of generalization performance on real-world rainy dataset.

Prerequisites

  • Python 3.6, PyTorch >= 0.4.0
  • Requirements: opencv-python, tensorboardX
  • Platforms: Ubuntu 16.04, cuda-10.0 & cuDNN v-7.5
  • MATLAB for computing evaluation metrics

Datasets

SRN and BRN are evaluated on seven datasets*: Rain100H [1], Rain100L [1], RainHeavy*[5], RainLight*[5], Rain12 [2], Rain1400 [3] and SPA-data [4]. Please download the testing datasets from BaiduYun or OneDrive, download the RainHeavy*[5] and RainLight*[5] from here, and download the testing generalization dataset SPA-data [4] from GoogleDrive. And then place the unzipped folders into './datasets/'. Make sure that the path of the extracted file is consistent with '--data_path'.

*We note that:

(i) The datasets of Rain100H and Rain100L have been updated by the authors. We notate them as RainHeavy* and RainLight*, that can be downloaded from here.

(ii) We upload the old datasets of Rain100H and Rain100L to BaiduYun or OneDrive. For Rain100H, we strictly exclude 546 rainy images that have the same background contents with testing images.

Getting Started

1) Testing

We have placed our pre-trained models into ./logs/.

Run shell scripts to test the models:

bash test_RainHeavy.sh   # test models on RainHeavy
bash test_RainLight.sh   # test models on RainLight
bash test_Rain100H.sh   # test models on Rain100H
bash test_Rain100L.sh   # test models on Rain100L
bash test_Rain12.sh     # test models on Rain12
bash test_Rain1400.sh   # test models on Rain1400
bash test_real.sh       # test models on SPA-data

(i) On RainHeavy* [5] and RainLight* [5], we re-train all the competing methods. We have uploaded all the trained models to ./logs/RainHeavy/ and ./logs/RainLight/. You can use their source codes to reproduce the results in the paper.

(ii) All the results in the paper are also available at GoogleDrive. You can place the downloaded results into ./results/, and directly compute all the evaluation metrics in this paper.

2) Evaluation metrics

We also provide the MATLAB scripts to compute the average PSNR and SSIM values reported in the paper.

 cd ./statistic
 run statistic_RainHeavy.m
 run statistic_RainLight.m
 run statistic_Rain100H.m
 run statistic_Rain100L.m
 run statistic_Rain12.m
 run statistic_Rain1400.m
 run statistic_real.m

3) Training

python train.py --save_path path_to_save_trained_models  --data_path path_to_training_dataset

*If you use the new dataset by yourself, please make sure to define new function for preprocessing training patches in DerainDataset.py.

References

[1] Yang W, Tan R, Feng J, Liu J, Guo Z, and Yan S. Deep joint rain detection and removal from a single image. In IEEE CVPR 2017.

[2] Li Y, Tan RT, Guo X, Lu J, and Brown M. Rain streak removal using layer priors. In IEEE CVPR 2016.

[3] Fu X, Huang J, Zeng D, Huang Y, Ding X, and Paisley J. Removing rain from single images via a deep detail network. In IEEE CVPR 2017.

[4] Wang T, Yang X, Xu K, Chen S, Zhang Q, and Lau R. Spatial attentive single-image deraining with a high quality real rain dataset. In IEEE CVPR 2019.

[5] Yang W, Tan R, Feng J, Liu J, Yan S, and Guo Z. Joint rain detection and removal from a single image with contextualized deep networks. IEEE T-PAMI 2019.

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
K-Nearest Neighbor in Pytorch

Pytorch KNN CUDA 2019/11/02 This repository will no longer be maintained as pytorch supports sort() and kthvalue on tensors. git clone https://github.

Chris Choy 65 Dec 01, 2022
An NVDA add-on to split screen reader and audio from other programs to different sound channels

An NVDA add-on to split screen reader and audio from other programs to different sound channels (add-on idea credit: Tony Malykh)

Joseph Lee 7 Dec 25, 2022
PyTorch module to use OpenFace's nn4.small2.v1.t7 model

OpenFace for Pytorch Disclaimer: This codes require the input face-images that are aligned and cropped in the same way of the original OpenFace. * I m

Pete Tae-hoon Kim 176 Dec 12, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection"

Official code for paper "ISNet: Costless and Implicit Image Segmentation for Deep Classifiers, with Application in COVID-19 Detection". LRPDenseNet.py

Pedro Ricardo Ariel Salvador Bassi 2 Sep 21, 2022
TICC is a python solver for efficiently segmenting and clustering a multivariate time series

TICC TICC is a python solver for efficiently segmenting and clustering a multivariate time series. It takes as input a T-by-n data matrix, a regulariz

406 Dec 12, 2022
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

A graph neural network (GNN) model to predict protein-protein interactions (PPI) with no sample features

2 Jul 25, 2022
Simple, efficient and flexible vision toolbox for mxnet framework.

MXbox: Simple, efficient and flexible vision toolbox for mxnet framework. MXbox is a toolbox aiming to provide a general and simple interface for visi

Ligeng Zhu 31 Oct 19, 2019
Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX.

Python scripts for performing object detection with the 1000 labels of the ImageNet dataset in ONNX. The repository combines a class agnostic object localizer to first detect the objects in the image

Ibai Gorordo 24 Nov 14, 2022
Deep Sea Treasure Environment for Multi-Objective Optimization Research

DeepSeaTreasure Environment Installation In order to get started with this environment, you can install it using the following command: python3 -m pip

imec IDLab 6 Nov 14, 2022
Creating Artificial Life with Reinforcement Learning

Although Evolutionary Algorithms have shown to result in interesting behavior, they focus on learning across generations whereas behavior could also be learned during ones lifetime.

Maarten Grootendorst 49 Dec 21, 2022
The implement of papar "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization"

SIGIR2021-EGLN The implement of paper "Enhanced Graph Learning for Collaborative Filtering via Mutual Information Maximization" Neural graph based Col

15 Dec 27, 2022
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing

ProFuzzBench - A Benchmark for Stateful Protocol Fuzzing ProFuzzBench is a benchmark for stateful fuzzing of network protocols. It includes a suite of

155 Jan 08, 2023
PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning"

PyTorch Implementation of the SuRP algorithm by the authors of the AISTATS 2022 paper "An Information-Theoretic Justification for Model Pruning".

Berivan Isik 8 Dec 08, 2022
ExCon: Explanation-driven Supervised Contrastive Learning

ExCon: Explanation-driven Supervised Contrastive Learning Link to the paper: https://arxiv.org/pdf/2111.14271.pdf Contributors of this repo: Zhibo Zha

Zhibo (Darren) Zhang 18 Nov 01, 2022
Pytorch implementation of DeepMind's differentiable neural computer paper.

DNC pytorch This is a Pytorch implementation of DeepMind's Differentiable Neural Computer (DNC) architecture introduced in their recent Nature paper:

Yuanpu Xie 91 Nov 21, 2022
VGGVox models for Speaker Identification and Verification trained on the VoxCeleb (1 & 2) datasets

VGGVox models for speaker identification and verification This directory contains code to import and evaluate the speaker identification and verificat

338 Dec 27, 2022