[CVPR 2021] Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Overview

Scan2Cap: Context-aware Dense Captioning in RGB-D Scans

Introduction

We introduce the task of dense captioning in 3D scans from commodity RGB-D sensors. As input, we assume a point cloud of a 3D scene; the expected output is the bounding boxes along with the descriptions for the underlying objects. To address the 3D object detection and description problems, we propose Scan2Cap, an end-to-end trained method, to detect objects in the input scene and describe them in natural language. We use an attention mechanism that generates descriptive tokens while referring to the related components in the local context. To reflect object relations (i.e. relative spatial relations) in the generated captions, we use a message passing graph module to facilitate learning object relation features. Our method can effectively localize and describe 3D objects in scenes from the ScanRefer dataset, outperforming 2D baseline methods by a significant margin (27.61% [email protected] improvement).

Please also check out the project website here.

For additional detail, please see the Scan2Cap paper:
"Scan2Cap: Context-aware Dense Captioning in RGB-D Scans"
by Dave Zhenyu Chen, Ali Gholami, Matthias Nießner and Angel X. Chang
from Technical University of Munich and Simon Fraser University.

Data

ScanRefer

If you would like to access to the ScanRefer dataset, please fill out this form. Once your request is accepted, you will receive an email with the download link.

Note: In addition to language annotations in ScanRefer dataset, you also need to access the original ScanNet dataset. Please refer to the ScanNet Instructions for more details.

Download the dataset by simply executing the wget command:

wget <download_link>

Scan2CAD

As learning the relative object orientations in the relational graph requires CAD model alignment annotations in Scan2CAD, please refer to the Scan2CAD official release (you need ~8MB on your disk). Once the data is downloaded, extract the zip file under data/ and change the path to Scan2CAD annotations (CONF.PATH.SCAN2CAD) in lib/config.py . As Scan2CAD doesn't cover all instances in ScanRefer, please download the mapping file and place it under CONF.PATH.SCAN2CAD. Parsing the raw Scan2CAD annotations by the following command:

python scripts/Scan2CAD_to_ScanNet.py

Setup

Please execute the following command to install PyTorch 1.8:

conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch

Install the necessary packages listed out in requirements.txt:

pip install -r requirements.txt

And don't forget to refer to Pytorch Geometric to install the graph support.

After all packages are properly installed, please run the following commands to compile the CUDA modules for the PointNet++ backbone:

cd lib/pointnet2
python setup.py install

Before moving on to the next step, please don't forget to set the project root path to the CONF.PATH.BASE in lib/config.py.

Data preparation

  1. Download the ScanRefer dataset and unzip it under data/ - You might want to run python scripts/organize_scanrefer.py to organize the data a bit.
  2. Download the preprocessed GLoVE embeddings (~990MB) and put them under data/.
  3. Download the ScanNetV2 dataset and put (or link) scans/ under (or to) data/scannet/scans/ (Please follow the ScanNet Instructions for downloading the ScanNet dataset).

After this step, there should be folders containing the ScanNet scene data under the data/scannet/scans/ with names like scene0000_00

  1. Pre-process ScanNet data. A folder named scannet_data/ will be generated under data/scannet/ after running the following command. Roughly 3.8GB free space is needed for this step:
cd data/scannet/
python batch_load_scannet_data.py

After this step, you can check if the processed scene data is valid by running:

python visualize.py --scene_id scene0000_00
  1. (Optional) Pre-process the multiview features from ENet.

    a. Download the ENet pretrained weights (1.4MB) and put it under data/

    b. Download and decompress the extracted ScanNet frames (~13GB).

    c. Change the data paths in config.py marked with TODO accordingly.

    d. Extract the ENet features:

    python scripts/compute_multiview_features.py

    e. Project ENet features from ScanNet frames to point clouds; you need ~36GB to store the generated HDF5 database:

    python scripts/project_multiview_features.py --maxpool

    You can check if the projections make sense by projecting the semantic labels from image to the target point cloud by:

    python scripts/project_multiview_labels.py --scene_id scene0000_00 --maxpool

Usage

End-to-End training for 3D dense captioning

Run the following script to start the end-to-end training of Scan2Cap model using the multiview features and normals. For more training options, please run scripts/train.py -h:

python scripts/train.py --use_multiview --use_normal --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10 --batch_size 12 --epoch 50

The trained model as well as the intermediate results will be dumped into outputs/ . For evaluating the model (@0.5IoU), please run the following script and change the accordingly, and note that arguments must match the ones for training:

python scripts/eval.py --folder <output_folder> --use_multiview --use_normal --use_topdown --use_relation --num_graph_steps 2 --num_locals 10 --eval_caption --min_iou 0.5

Evaluating the detection performance:

python scripts/eval.py --folder <output_folder> --use_multiview --use_normal --use_topdown --use_relation --num_graph_steps 2 --num_locals 10 --eval_detection

You can even evaluate the pretraiend object detection backbone:

python scripts/eval.py --folder <output_folder> --use_multiview --use_normal --use_topdown --use_relation --num_graph_steps 2 --num_locals 10 --eval_detection --eval_pretrained

If you want to visualize the results, please run this script to generate bounding boxes and descriptions for scene to outputs/ :

python scripts/visualize.py --folder <output_folder> --scene_id <scene_id> --use_multiview --use_normal --use_topdown --use_relation --num_graph_steps 2 --num_locals 10

Note that you need to run python scripts/export_scannet_axis_aligned_mesh.py first to generate axis-aligned ScanNet mesh files.

3D dense captioning with ground truth bounding boxes

For experimenting the captioning performance with ground truth bounding boxes, you need to extract the box features with a pre-trained extractor. The pretrained ones are already in pretrained, but if you want to train a new one from scratch, run the following script:

python scripts/train_maskvotenet.py --batch_size 8 --epoch 200 --lr 1e-3 --wd 0 --use_multiview --use_normal

The pretrained model will be stored under outputs/ . Before we proceed, you need to move the to pretrained/ and change the name of the folder to XYZ_MULTIVIEW_NORMAL_MASKS_VOTENET, which must reflect the features while training, e.g. MULTIVIEW -> --use_multiview.

After that, let's run the following script to extract the features for the ground truth bounding boxes. Note that the feature options must match the ones in the previous steps:

python scripts/extract_gt_features.py --batch_size 16 --epoch 100 --use_multiview --use_normal --train --val

The extracted features will be stored as a HDF5 database under /gt_ _features . You need ~610MB space on your disk.

Now the box features are ready - we're good to go! Next step: run the following command to start training the dense captioning pipeline with the extraced ground truth box features:

python scripts/train_pretrained.py --mode gt --batch_size 32 --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10

For evaluating the model, run the following command:

python scripts/eval_pretrained.py --folder <ouptut_folder> --mode gt --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10 

3D dense captioning with pre-trained VoteNet bounding boxes

If you would like to play around with the pre-trained VoteNet bounding boxes, you can directly use the pre-trained VoteNet in pretrained. After picking the model you like, run the following command to extract the bounding boxes and associated box features:

python scripts/extract_votenet_features.py --batch_size 16 --epoch 100 --use_multiview --use_normal --train --val

Now the box features are ready. Next step: run the following command to start training the dense captioning pipeline with the extraced VoteNet boxes:

python scripts/train_pretrained.py --mode votenet --batch_size 32 --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10

For evaluating the model, run the following command:

python scripts/eval_pretrained.py --folder <ouptut_folder> --mode votenet --use_topdown --use_relation --use_orientation --num_graph_steps 2 --num_locals 10 

Experiments on ReferIt3D

Yes, of course you can use the ReferIt3D dataset for training and evaluation. Simply download ReferIt3D dataset and unzip it under data, then run the following command to convert it to ScanRefer format:

python scripts/organize_referit3d.py

Then you can simply specify the dataset you would like to use by --dataset ReferIt3D in the aforementioned steps. Have fun!

2D Experiments

Please refer to Scan2Cad-2D for more information.

Citation

If you found our work helpful, please kindly cite our paper via:

@inproceedings{chen2021scan2cap,
  title={Scan2Cap: Context-aware Dense Captioning in RGB-D Scans},
  author={Chen, Zhenyu and Gholami, Ali and Nie{\ss}ner, Matthias and Chang, Angel X},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
  pages={3193--3203},
  year={2021}
}

License

Scan2Cap is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License.

Copyright (c) 2021 Dave Zhenyu Chen, Ali Gholami, Matthias Nießner, Angel X. Chang

Owner
Dave Z. Chen
PhD candidate at TUM
Dave Z. Chen
Roger Labbe 13k Dec 29, 2022
CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped

CSWin-Transformer This repo is the official implementation of "CSWin Transformer: A General Vision Transformer Backbone with Cross-Shaped Windows". Th

Microsoft 409 Jan 06, 2023
DSAC* for Visual Camera Re-Localization (RGB or RGB-D)

DSAC* for Visual Camera Re-Localization (RGB or RGB-D) Introduction Installation Data Structure Supported Datasets 7Scenes 12Scenes Cambridge Landmark

Visual Learning Lab 143 Dec 22, 2022
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
PyTorch Implementation for AAAI'21 "Do Response Selection Models Really Know What's Next? Utterance Manipulation Strategies for Multi-turn Response Selection"

UMS for Multi-turn Response Selection Implements the model described in the following paper Do Response Selection Models Really Know What's Next? Utte

Taesun Whang 47 Nov 22, 2022
Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation

Using Self-Supervised Pretext Tasks for Active Learning - Official Pytorch Implementation Experiment Setting: CIFAR10 (downloaded and saved in ./DATA

John Seon Keun Yi 38 Dec 27, 2022
UV matrix decompostion using movielens dataset

UV-matrix-decompostion-with-kfold UV matrix decompostion using movielens dataset upload the 'ratings.dat' file install the following python libraries

2 Oct 18, 2022
Paper: Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification

Cross-View Kernel Similarity Metric Learning Using Pairwise Constraints for Person Re-identification T M Feroz Ali, Subhasis Chaudhuri, ICVGIP-20-21

T M Feroz Ali 3 Jun 17, 2022
Re-implement CycleGAN in Tensorlayer

CycleGAN_Tensorlayer Re-implement CycleGAN in TensorLayer Original CycleGAN Improved CycleGAN with resize-convolution Prerequisites: TensorLayer Tenso

89 Aug 15, 2022
Implementation of the "PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences" paper.

PSTNet: Point Spatio-Temporal Convolution on Point Cloud Sequences Introduction Point cloud sequences are irregular and unordered in the spatial dimen

Hehe Fan 63 Dec 09, 2022
MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks

MetaBalance: Improving Multi-Task Recommendations via Adapting Gradient Magnitudes of Auxiliary Tasks Introduction This repo contains the pytorch impl

Meta Research 38 Oct 10, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
EgGateWayGetShell py脚本

EgGateWayGetShell_py 免责声明 由于传播、利用此文所提供的信息而造成的任何直接或者间接的后果及损失,均由使用者本人负责,作者不为此承担任何责任。 使用 python3 eg.py urls.txt 目标 title:锐捷网络-EWEB网管系统 port:4430 漏洞成因 ?p

榆木 61 Nov 09, 2022
Auto grind btdb2 exp for tower

Bloons TD Battles 2 EXP Grinder Auto grind btdb2 exp for towers Setup I suggest checking out every screenshot to see what they are supposed to be, so

Vincent 6 Jul 29, 2022
Multi-task Multi-agent Soft Actor Critic for SMAC

Multi-task Multi-agent Soft Actor Critic for SMAC Overview The CARE formulti-task: Multi-Task Reinforcement Learning with Context-based Representation

RuanJingqing 8 Sep 30, 2022
HDMapNet: A Local Semantic Map Learning and Evaluation Framework

HDMapNet_devkit Devkit for HDMapNet. HDMapNet: A Local Semantic Map Learning and Evaluation Framework Qi Li, Yue Wang, Yilun Wang, Hang Zhao [Paper] [

Tsinghua MARS Lab 421 Jan 04, 2023
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
GAN Image Generator and Characterwise Image Recognizer with python

MODEL SUMMARY 모델의 구조는 크게 6단계로 나뉩니다. STEP 0: Input Image Predict 할 이미지를 모델에 입력합니다. STEP 1: Make Black and White Image STEP 1 은 입력받은 이미지의 글자를 흑색으로, 배경을

Juwan HAN 1 Feb 09, 2022
Official PyTorch implementation of "Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks" (AAAI 2022)

Preemptive Image Robustification for Protecting Users against Man-in-the-Middle Adversarial Attacks This is the code for reproducing the results of th

2 Dec 27, 2021
Official Pytorch implementation of Meta Internal Learning

Official Pytorch implementation of Meta Internal Learning

10 Aug 24, 2022