Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis

Overview

Chunked Autoregressive GAN (CARGAN)

PyPI License Downloads

Official implementation of the paper Chunked Autoregressive GAN for Conditional Waveform Synthesis [paper] [companion website]

Table of contents

Installation

pip install cargan

Configuration

All configuration is performed in cargan/constants.py. The default configuration is CARGAN. Additional configuration files for experiments described in our paper can be found in config/.

Inference

CLI

Infer from an audio files on disk. audio_files and output_files can be lists of files to perform batch inference.

python -m cargan \
    --audio_files 
   
     \
    --output_files 
    
      \
    --checkpoint 
     
       \
    --gpu 
      

      
     
    
   

Infer from files of features on disk. feature_files and output_files can be lists of files to perform batch inference.

python -m cargan \
    --feature_files 
   
     \
    --output_files 
    
      \
    --checkpoint 
     
       \
    --gpu 
      

      
     
    
   

API

cargan.from_audio

"""Perform vocoding from audio

Arguments
    audio : torch.Tensor(shape=(1, samples))
        The audio to vocode
    sample_rate : int
        The audio sample rate
    gpu : int or None
        The index of the gpu to use

Returns
    vocoded : torch.Tensor(shape=(1, samples))
        The vocoded audio
"""

cargan.from_audio_file_to_file

"""Perform vocoding from audio file and save to file

Arguments
    audio_file : Path
        The audio file to vocode
    output_file : Path
        The location to save the vocoded audio
    checkpoint : Path
        The generator checkpoint
    gpu : int or None
        The index of the gpu to use
"""

cargan.from_audio_files_to_files

"""Perform vocoding from audio files and save to files

Arguments
    audio_files : list(Path)
        The audio files to vocode
    output_files : list(Path)
        The locations to save the vocoded audio
    checkpoint : Path
        The generator checkpoint
    gpu : int or None
        The index of the gpu to use
"""

cargan.from_features

"""Perform vocoding from features

Arguments
    features : torch.Tensor(shape=(1, cargan.NUM_FEATURES, frames)
        The features to vocode
    gpu : int or None
        The index of the gpu to use

Returns
    vocoded : torch.Tensor(shape=(1, cargan.HOPSIZE * frames))
        The vocoded audio
"""

cargan.from_feature_file_to_file

"""Perform vocoding from feature file and save to disk

Arguments
    feature_file : Path
        The feature file to vocode
    output_file : Path
        The location to save the vocoded audio
    checkpoint : Path
        The generator checkpoint
    gpu : int or None
        The index of the gpu to use
"""

cargan.from_feature_files_to_files

"""Perform vocoding from feature files and save to disk

Arguments
    feature_files : list(Path)
        The feature files to vocode
    output_files : list(Path)
        The locations to save the vocoded audio
    checkpoint : Path
        The generator checkpoint
    gpu : int or None
        The index of the gpu to use
"""

Reproducing results

For the following subsections, the arguments are as follows

  • checkpoint - Path to an existing checkpoint on disk
  • datasets - A list of datasets to use. Supported datasets are vctk, daps, cumsum, and musdb.
  • gpu - The index of the gpu to use
  • gpus - A list of indices of gpus to use for distributed data parallelism (DDP)
  • name - The name to give to an experiment or evaluation
  • num - The number of samples to evaluate

Download

Downloads, unzips, and formats datasets. Stores datasets in data/datasets/. Stores formatted datasets in data/cache/.

python -m cargan.data.download --datasets 
   

   

vctk must be downloaded before cumsum.

Preprocess

Prepares features for training. Features are stored in data/cache/.

python -m cargan.preprocess --datasets 
   
     --gpu 
    

    
   

Running this step is not required for the cumsum experiment.

Partition

Partitions a dataset into training, validation, and testing partitions. You should not need to run this, as the partitions used in our work are provided for each dataset in cargan/assets/partitions/.

python -m cargan.partition --datasets 
   

   

The optional --overwrite flag forces the existing partition to be overwritten.

Train

Trains a model. Checkpoints and logs are stored in runs/.

python -m cargan.train \
    --name 
   
     \
    --datasets 
    
      \
    --gpus 
     

     
    
   

You can optionally specify a --checkpoint option pointing to the directory of a previous run. The most recent checkpoint will automatically be loaded and training will resume from that checkpoint. You can overwrite a previous training by passing the --overwrite flag.

You can monitor training via tensorboard as follows.

tensorboard --logdir runs/ --port 
   

   

Evaluate

Objective

Reports the pitch RMSE (in cents), periodicity RMSE, and voiced/unvoiced F1 score. Results are both printed and stored in eval/objective/.

python -m cargan.evaluate.objective \
    --name 
   
     \
    --datasets 
    
      \
    --checkpoint 
     
       \
    --num 
      
        \
    --gpu 
        
       
      
     
    
   

Subjective

Generates samples for subjective evaluation. Also performs benchmarking of inference speed. Results are stored in eval/subjective/.

python -m cargan.evaluate.subjective \
    --name 
   
     \
    --datasets 
    
      \
    --checkpoint 
     
       \
    --num 
      
        \
    --gpu 
        
       
      
     
    
   

Receptive field

Get the size of the (non-causal) receptive field of the generator. cargan.AUTOREGRESSIVE must be False to use this.

python -m cargan.evaluate.receptive_field

Running tests

pip install pytest
pytest

Citation

IEEE

M. Morrison, R. Kumar, K. Kumar, P. Seetharaman, A. Courville, and Y. Bengio, "Chunked Autoregressive GAN for Conditional Waveform Synthesis," Submitted to ICLR 2022, April 2022.

BibTex

@inproceedings{morrison2022chunked,
    title={Chunked Autoregressive GAN for Conditional Waveform Synthesis},
    author={Morrison, Max and Kumar, Rithesh and Kumar, Kundan and Seetharaman, Prem and Courville, Aaron and Bengio, Yoshua},
    booktitle={Submitted to ICLR 2022},
    month={April},
    year={2022}
}
Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models This repo contains code for DDPM training. Based on Denoising Diffusion Probabilistic Models, Improved Denois

Alexander Markov 7 Dec 15, 2022
Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral)

Single-Stage Instance Shadow Detection with Bidirectional Relation Learning (CVPR 2021 Oral) Tianyu Wang*, Xiaowei Hu*, Chi-Wing Fu, and Pheng-Ann Hen

Steve Wong 51 Oct 20, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Simple cross-platform application for DaVinci surgical video frame annotation

About DaVid is a simple cross-platform GUI for annotating robotic and endoscopic surgical actions for use in deep-learning research. Features Simple a

Cyril Zakka 4 Oct 09, 2021
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability.

Delayed-cellular-neural-network This project provides the proof of the uniqueness of the equilibrium and the global asymptotic stability. There is als

4 Apr 28, 2022
Gauge equivariant mesh cnn

Geometric Mesh CNN The code in this repository is an implementation of the Gauge Equivariant Mesh CNN introduced in the paper Gauge Equivariant Mesh C

50 Dec 18, 2022
Code for ICCV 2021 paper Graph-to-3D: End-to-End Generation and Manipulation of 3D Scenes using Scene Graphs

Graph-to-3D This is the official implementation of the paper Graph-to-3d: End-to-End Generation and Manipulation of 3D Scenes Using Scene Graphs | arx

Helisa Dhamo 33 Jan 06, 2023
SCU OlympicsRunning Baseline

Competition 1v1 running Environment check details in Jidi Competition RLChina2021智能体竞赛 做出的修改: 奖励重塑:修改了环境,重新设置了奖励的分配,使得奖励组成不只有零和博弈,还有探索环境的奖励。 算法微调:修改了官

ZiSeoi Wong 2 Nov 23, 2021
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
ShapeGlot: Learning Language for Shape Differentiation

ShapeGlot: Learning Language for Shape Differentiation Created by Panos Achlioptas, Judy Fan, Robert X.D. Hawkins, Noah D. Goodman, Leonidas J. Guibas

Panos 32 Dec 23, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
Make your own game in a font!

Project structure. Included is a suite of tools to create font games. Tutorial: For a quick tutorial about how to make your own game go here For devel

Michael Mulet 125 Dec 04, 2022
Generate vibrant and detailed images using only text.

CLIP Guided Diffusion From RiversHaveWings. Generate vibrant and detailed images using only text. See captions and more generations in the Gallery See

Clay M. 401 Dec 28, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
MCMC samplers for Bayesian estimation in Python, including Metropolis-Hastings, NUTS, and Slice

Sampyl May 29, 2018: version 0.3 Sampyl is a package for sampling from probability distributions using MCMC methods. Similar to PyMC3 using theano to

Mat Leonard 304 Dec 25, 2022
Code and datasets for TPAMI 2021

SkeletonNet This repository constains the codes and ShapeNetV1-Surface-Skeleton,ShapNetV1-SkeletalVolume and 2d image datasets ShapeNetRendering. Plea

34 Aug 15, 2022
Source codes for "Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs"

Structure-Aware-BART This repo contains codes for the following paper: Jiaao Chen, Diyi Yang:Structure-Aware Abstractive Conversation Summarization vi

GT-SALT 56 Dec 08, 2022
paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022