Official page of Patchwork (RA-L'21 w/ IROS'21)

Overview

Patchwork

Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor", which is accepted by RA-L with IROS'21 option

[Video] [Preprint Paper] [Project Wiki]

Patchwork Concept of our method (CZM & GLE)

It's an overall updated version of R-GPF of ERASOR [Code] [Paper].


Demo

KITTI 00

Rough Terrain


Characteristics

  • Single hpp file (include/patchwork/patchwork.hpp)

  • Robust ground consistency

As shown in the demo videos and below figure, our method shows the most promising robust performance compared with other state-of-the-art methods, especially, our method focuses on the little perturbation of precision/recall as shown in this figure.

Please kindly note that the concept of traversable area and ground is quite different! Please refer to our paper.

Contents

  1. Test Env.
  2. Requirements
  3. How to Run Patchwork
  4. Citation

Test Env.

The code is tested successfully at

  • Linux 18.04 LTS
  • ROS Melodic

Requirements

ROS Setting

    1. Install ROS on a machine.
    1. Thereafter, jsk-visualization is required to visualize Ground Likelihood Estimation status.
sudo apt-get install ros-melodic-jsk-recognition
sudo apt-get install ros-melodic-jsk-common-msgs
sudo apt-get install ros-melodic-jsk-rviz-plugins
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
git clone https://github.com/LimHyungTae/patchwork.git
cd .. && catkin build patchwork 

How to Run Patchwork

We provide three examples

  • Offline KITTI dataset
  • Online (ROS Callback) KITTI dataset
  • Own dataset using pcd files

Offline KITTI dataset

  1. Download SemanticKITTI Odometry dataset (We also need labels since we also open the evaluation code! :)

  2. Set the data_path in launch/offline_kitti.launch for your machine.

The data_path consists of velodyne folder and labels folder as follows:

data_path (e.g. 00, 01, ..., or 10)
_____velodyne
     |___000000.bin
     |___000001.bin
     |___000002.bin
     |...
_____labels
     |___000000.label
     |___000001.label
     |___000002.label
     |...
_____...
   
  1. Run launch file
roslaunch patchwork offline_kitti.launch

You can directly feel the speed of Patchwork! 😉

Online (ROS Callback) KITTI dataset

We also provide rosbag example. If you run our patchwork via rosbag, please refer to this example.

  1. Download readymade rosbag
wget https://urserver.kaist.ac.kr/publicdata/patchwork/kitti_00_xyzilid.bag
  1. After building this package, run the roslaunch as follows:
roslaunch patchwork rosbag_kitti.launch
  1. Then play the rosbag file in another command
rosbag play kitti_00_xyzilid.bag

Own dataset using pcd files

Please refer to /nodes/offilne_own_data.cpp.

(Note that in your own data format, there may not exist ground truth labels!)

Be sure to set right params. Otherwise, your results may be wrong as follows:

W/ wrong params After setting right params

For better understanding of the parameters of Patchwork, please read our wiki, 4. IMPORTANT: Setting Parameters of Patchwork in Your Own Env..

Offline (Using *.pcd or *.bin file)

  1. Utilize /nodes/offilne_own_data.cpp

  2. Please check the output by following command and corresponding files:

roslaunch patchwork offline_ouster128.launch

Online (via rosbag)

  1. Utilize rosbag_kitti.launch.

  2. To do so, remap the topic of subscriber, e.g. add remap line as follows:

<remap from="/node" to="$YOUR_LIDAR_TOPIC_NAME$"/>
  1. In addition, minor modification of ros_kitti.cpp is necessary by refering to offline_own_data.cpp.

Citation

If you use our code or method in your work, please consider citing the following:

@article{lim2021patchwork,
title={Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor},
author={Lim, Hyungtae and Minho, Oh and Myung, Hyun},
journal={IEEE Robotics and Automation Letters},
year={2021}
}

Description

All explanations of parameters and other experimental results will be uploaded in wiki

Contact

If you have any questions, please let me know:

TODO List

  • Add ROS support
  • Add preprint paper
  • Add demo videos
  • Add own dataset examples
  • Update wiki

Owner
Hyungtae Lim
Ph.D Candidate of URL lab. @ KAIST, South Korea
Hyungtae Lim
Continuum Learning with GEM: Gradient Episodic Memory

Gradient Episodic Memory for Continual Learning Source code for the paper: @inproceedings{GradientEpisodicMemory, title={Gradient Episodic Memory

Facebook Research 360 Dec 27, 2022
Train Yolov4 using NBX-Jobs

yolov4-trainer-nbox Train Yolov4 using NBX-Jobs. Use the powerfull functionality available in nbox-SDK repo to train a tiny-Yolo v4 model on Pascal VO

Yash Bonde 1 Jan 12, 2022
Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization

Towards Ultra-Resolution Neural Style Transfer via Thumbnail Instance Normalization Official PyTorch implementation for our URST (Ultra-Resolution Sty

czczup 148 Dec 27, 2022
Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-wise Distributed Data based on Pytorch Framework

VFedPCA+VFedAKPCA This is the official source code for the Paper: Vertical Federated Principal Component Analysis and Its Kernel Extension on Feature-

John 9 Sep 18, 2022
Code for "Continuous-Time Meta-Learning with Forward Mode Differentiation" (ICLR 2022)

Continuous-Time Meta-Learning with Forward Mode Differentiation ICLR 2022 (Spotlight) - Installation - Example - Citation This repository contains the

Tristan Deleu 25 Oct 20, 2022
A proof of concept ai-powered Recaptcha v2 solver

Recaptcha Fullauto I've decided to open source my old Recaptcha v2 solver. My latest version will be opened sourced this summer. I am hoping this proj

Nate 60 Dec 20, 2022
Generic template to bootstrap your PyTorch project with PyTorch Lightning, Hydra, W&B, and DVC.

NN Template Generic template to bootstrap your PyTorch project. Click on Use this Template and avoid writing boilerplate code for: PyTorch Lightning,

Luca Moschella 520 Dec 30, 2022
PyTorch code for BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation

Salesforce 1.3k Dec 31, 2022
Machine Learning Privacy Meter: A tool to quantify the privacy risks of machine learning models with respect to inference attacks, notably membership inference attacks

ML Privacy Meter Machine learning is playing a central role in automated decision making in a wide range of organization and service providers. The da

Data Privacy and Trustworthy Machine Learning Research Lab 357 Jan 06, 2023
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
[ICCV2021] IICNet: A Generic Framework for Reversible Image Conversion

IICNet - Invertible Image Conversion Net Official PyTorch Implementation for IICNet: A Generic Framework for Reversible Image Conversion (ICCV2021). D

felixcheng97 55 Dec 06, 2022
Air Pollution Prediction System using Linear Regression and ANN

AirPollution Pollution Weather Prediction System: Smart Outdoor Pollution Monitoring and Prediction for Healthy Breathing and Living Publication Link:

Dr Sharnil Pandya, Associate Professor, Symbiosis International University 19 Feb 07, 2022
Starter code for the ICCV 2021 paper, 'Detecting Invisible People'

Detecting Invisible People [ICCV 2021 Paper] [Website] Tarasha Khurana, Achal Dave, Deva Ramanan Introduction This repository contains code for Detect

Tarasha Khurana 28 Sep 16, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Implementation of the method proposed in the paper "Neural Descriptor Fields: SE(3)-Equivariant Object Representations for Manipulation"

Neural Descriptor Fields (NDF) PyTorch implementation for training continuous 3D neural fields to represent dense correspondence across objects, and u

167 Jan 06, 2023
This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their coordinates and detected labels.

This YoloV5 based model is fit to detect people and different types of land vehicles, and displaying their density on a fitted map, according to their

Liron Bdolah 8 May 22, 2022
Fit Fast, Explain Fast

FastExplain Fit Fast, Explain Fast Installing pip install fast-explain About FastExplain FastExplain provides an out-of-the-box tool for analysts to

8 Dec 15, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
Open-L2O: A Comprehensive and Reproducible Benchmark for Learning to Optimize Algorithms

Open-L2O This repository establishes the first comprehensive benchmark efforts of existing learning to optimize (L2O) approaches on a number of proble

VITA 161 Jan 02, 2023
Framework for abstracting Amiga debuggers and access to AmigaOS libraries and devices.

Framework for abstracting Amiga debuggers. This project provides abstration to control an Amiga remotely using a debugger. The APIs are not yet stable

Roc Vallès 39 Nov 22, 2022