Official page of Patchwork (RA-L'21 w/ IROS'21)

Overview

Patchwork

Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor", which is accepted by RA-L with IROS'21 option

[Video] [Preprint Paper] [Project Wiki]

Patchwork Concept of our method (CZM & GLE)

It's an overall updated version of R-GPF of ERASOR [Code] [Paper].


Demo

KITTI 00

Rough Terrain


Characteristics

  • Single hpp file (include/patchwork/patchwork.hpp)

  • Robust ground consistency

As shown in the demo videos and below figure, our method shows the most promising robust performance compared with other state-of-the-art methods, especially, our method focuses on the little perturbation of precision/recall as shown in this figure.

Please kindly note that the concept of traversable area and ground is quite different! Please refer to our paper.

Contents

  1. Test Env.
  2. Requirements
  3. How to Run Patchwork
  4. Citation

Test Env.

The code is tested successfully at

  • Linux 18.04 LTS
  • ROS Melodic

Requirements

ROS Setting

    1. Install ROS on a machine.
    1. Thereafter, jsk-visualization is required to visualize Ground Likelihood Estimation status.
sudo apt-get install ros-melodic-jsk-recognition
sudo apt-get install ros-melodic-jsk-common-msgs
sudo apt-get install ros-melodic-jsk-rviz-plugins
mkdir -p ~/catkin_ws/src
cd ~/catkin_ws/src
git clone https://github.com/LimHyungTae/patchwork.git
cd .. && catkin build patchwork 

How to Run Patchwork

We provide three examples

  • Offline KITTI dataset
  • Online (ROS Callback) KITTI dataset
  • Own dataset using pcd files

Offline KITTI dataset

  1. Download SemanticKITTI Odometry dataset (We also need labels since we also open the evaluation code! :)

  2. Set the data_path in launch/offline_kitti.launch for your machine.

The data_path consists of velodyne folder and labels folder as follows:

data_path (e.g. 00, 01, ..., or 10)
_____velodyne
     |___000000.bin
     |___000001.bin
     |___000002.bin
     |...
_____labels
     |___000000.label
     |___000001.label
     |___000002.label
     |...
_____...
   
  1. Run launch file
roslaunch patchwork offline_kitti.launch

You can directly feel the speed of Patchwork! 😉

Online (ROS Callback) KITTI dataset

We also provide rosbag example. If you run our patchwork via rosbag, please refer to this example.

  1. Download readymade rosbag
wget https://urserver.kaist.ac.kr/publicdata/patchwork/kitti_00_xyzilid.bag
  1. After building this package, run the roslaunch as follows:
roslaunch patchwork rosbag_kitti.launch
  1. Then play the rosbag file in another command
rosbag play kitti_00_xyzilid.bag

Own dataset using pcd files

Please refer to /nodes/offilne_own_data.cpp.

(Note that in your own data format, there may not exist ground truth labels!)

Be sure to set right params. Otherwise, your results may be wrong as follows:

W/ wrong params After setting right params

For better understanding of the parameters of Patchwork, please read our wiki, 4. IMPORTANT: Setting Parameters of Patchwork in Your Own Env..

Offline (Using *.pcd or *.bin file)

  1. Utilize /nodes/offilne_own_data.cpp

  2. Please check the output by following command and corresponding files:

roslaunch patchwork offline_ouster128.launch

Online (via rosbag)

  1. Utilize rosbag_kitti.launch.

  2. To do so, remap the topic of subscriber, e.g. add remap line as follows:

<remap from="/node" to="$YOUR_LIDAR_TOPIC_NAME$"/>
  1. In addition, minor modification of ros_kitti.cpp is necessary by refering to offline_own_data.cpp.

Citation

If you use our code or method in your work, please consider citing the following:

@article{lim2021patchwork,
title={Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor},
author={Lim, Hyungtae and Minho, Oh and Myung, Hyun},
journal={IEEE Robotics and Automation Letters},
year={2021}
}

Description

All explanations of parameters and other experimental results will be uploaded in wiki

Contact

If you have any questions, please let me know:

TODO List

  • Add ROS support
  • Add preprint paper
  • Add demo videos
  • Add own dataset examples
  • Update wiki

Owner
Hyungtae Lim
Ph.D Candidate of URL lab. @ KAIST, South Korea
Hyungtae Lim
Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies.

Crypto_Bot Uses Open AI Gym environment to create autonomous cryptocurrency bot to trade cryptocurrencies. Steps to get started using the bot: Sign up

21 Oct 03, 2022
Help you understand Manual and w/ Clutch point while driving.

简体中文 forza_auto_gear forza_auto_gear is a tool for Forza Horizon 5. It will help us understand the best gear shift point using Manual or w/ Clutch in

15 Oct 08, 2022
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild with Dense 3D Representations and A Benchmark. (CVPR 2022)"

Gait3D-Benchmark This is the code for the paper "Jinkai Zheng, Xinchen Liu, Wu Liu, Lingxiao He, Chenggang Yan, Tao Mei: Gait Recognition in the Wild

82 Jan 04, 2023
A library for hidden semi-Markov models with explicit durations

hsmmlearn hsmmlearn is a library for unsupervised learning of hidden semi-Markov models with explicit durations. It is a port of the hsmm package for

Joris Vankerschaver 69 Dec 20, 2022
TensorFlow2 Classification Model Zoo playing with TensorFlow2 on the CIFAR-10 dataset.

Training CIFAR-10 with TensorFlow2(TF2) TensorFlow2 Classification Model Zoo. I'm playing with TensorFlow2 on the CIFAR-10 dataset. Architectures LeNe

Chia-Hung Yuan 16 Sep 27, 2022
Look Who’s Talking: Active Speaker Detection in the Wild

Look Who's Talking: Active Speaker Detection in the Wild Dependencies pip install -r requirements.txt In addition to the Python dependencies, ffmpeg

Clova AI Research 60 Dec 08, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
Code for the CVPR 2021 paper: Understanding Failures of Deep Networks via Robust Feature Extraction

Welcome to Barlow Barlow is a tool for identifying the failure modes for a given neural network. To achieve this, Barlow first creates a group of imag

Sahil Singla 33 Dec 05, 2022
OpenAi's gym environment wrapper to vectorize them with Ray

Ray Vector Environment Wrapper You would like to use Ray to vectorize your environment but you don't want to use RLLib ? You came to the right place !

Pierre TASSEL 15 Nov 10, 2022
Official PyTorch Implementation of "Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs". NeurIPS 2020.

Self-supervised Auxiliary Learning with Meta-paths for Heterogeneous Graphs This repository is the implementation of SELAR. Dasol Hwang* , Jinyoung Pa

MLV Lab (Machine Learning and Vision Lab at Korea University) 48 Nov 09, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 47 Sep 06, 2022
A mini library for Policy Gradients with Parameter-based Exploration, with reference implementation of the ClipUp optimizer from NNAISENSE.

PGPElib A mini library for Policy Gradients with Parameter-based Exploration [1] and friends. This library serves as a clean re-implementation of the

NNAISENSE 56 Jan 01, 2023
Official PyTorch implementation of paper: Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene Segmentation (ICCV 2021 Oral Presentation)

SML (ICCV 2021, Oral) : Official Pytorch Implementation This repository provides the official PyTorch implementation of the following paper: Standardi

SangHun 61 Dec 27, 2022
An Unbiased Learning To Rank Algorithms (ULTRA) toolbox

Unbiased Learning to Rank Algorithms (ULTRA) This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiment

back 3 Nov 18, 2022
IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling

IEEE-CIS Technical Challenge on Predict+Optimize for Renewable Energy Scheduling This is my code, data and approach for the IEEE-CIS Technical Challen

3 Sep 18, 2022
you can add any codes in any language by creating its respective folder (if already not available).

HACKTOBERFEST-2021-WEB-DEV Beginner-Hacktoberfest Need Your first pr for hacktoberfest 2k21 ? come on in About This is repository of Responsive Portfo

Suman Sharma 8 Oct 17, 2022
OpenMMLab Text Detection, Recognition and Understanding Toolbox

Introduction English | 简体中文 MMOCR is an open-source toolbox based on PyTorch and mmdetection for text detection, text recognition, and the correspondi

OpenMMLab 3k Jan 07, 2023
PyTorch for Semantic Segmentation

PyTorch for Semantic Segmentation This repository contains some models for semantic segmentation and the pipeline of training and testing models, impl

Zijun Deng 1.7k Jan 06, 2023
GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery

GLODISMO: Gradient-Based Learning of Discrete Structured Measurement Operators for Signal Recovery This is the code to the paper: Gradient-Based Learn

3 Feb 15, 2022