you can add any codes in any language by creating its respective folder (if already not available).

Overview

HACKTOBERFEST-2021-WEB-DEV


Beginner-Hacktoberfest

Need Your first pr for hacktoberfest 2k21 ? come on in

About

This is repository of Responsive Portfolio for Hacktoberfest 2021. Participate in Hacktoberfest by contributing to any Open Source project on GitHub! Here is a starter project for first-time contributors.
Visit website


What's Hacktoberfest 2021?

Hacktoberfest is the easiest way to get into open source! Hacktoberfest is a month long festival of open source code presented by Digital Ocean and DEV this year in 2021.

During the entire month of October 2021, all you have to do is contribute to any open source projects and open at least 4 pull requests. Yes, any project and any kind of contributions. It can be a be a bug fix, improvement, or even a documentation change! And win a T-Shirt and awesome stickers.

If you’ve never contributed to open source before, this is the perfect time to get started because Hacktoberfest provides a large list of available contribution opportunities (and yes, there are always plenty for beginners too).



👕 Why Should I Contribute?

Hacktoberfest has a simple and plain moto.

Support open source and earn a limited edition T-shirt!

So, yes! You can win a T-Shirt and few awesome stickers to attach on your laptop. On plus side, you will get into beautiful world of open source and get the international exposure.
Wait there's more!



👍 This is Awesome! How Can I Contribute?

Don't know how to start of open source and Contribute to our Open Source Project ? Welcome to the world of hacking!

The steps to follow to contribute to any projects:

  1. If you don't have git on your machine, install it.

  2. Fork this repository

    Fork this repository by clicking on the fork button on the top of this page. This will create a copy of this repository in your account.

  3. Clone the repository

    Now clone the forked repository to your machine. Go to your GitHub account, open the forked repository, click on the code button and then click the copy to clipboard icon.

    Open a terminal and run the following git command:

    git clone "url you just copied"
    
  4. Add a upstream link to main branch in your cloned repo

    git remote add upstream <original repository>
    
  5. Keep your cloned repo upto date by pulling from upstream

    This will also avoid any merge conflicts while committing new changes

    git pull upstream main
    
  6. Create your feature branch

    Always create new branch

    git checkout -b <feature-name>
    
  7. Track your changes

    git add .
    
  8. Check for your changes.

    git status
    
  9. Commit all the changes

    Write commit message as "Small Message"

    git commit -m "Write a meaningfull but small commit message"
    
  10. Push the changes for review

    git push origin <branch-name>
    
  11. Create a PR on Github.

    Just hit the create a pull request button, you must write a PR message to clarify why and what are you contributing
    

🔥 What will happen after my contribution?

I have created a simple page to display all contributors list here, your name should appear shortly after the pull request is merged.


What I have to do?

You can add any codes in any language by creating its respective folder (if already not available).


Owner
Suman Sharma
We need to have a talk on the subject of what's yours and what's mine. [sumansharma101]
Suman Sharma
Code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectrograms, using the PyTorch Lightning.

stereoEEG2speech We provide code for a seq2seq architecture with Bahdanau attention designed to map stereotactic EEG data from human brains to spectro

15 Nov 11, 2022
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
Using BERT+Bi-LSTM+CRF

Chinese Medical Entity Recognition Based on BERT+Bi-LSTM+CRF Step 1 I share the dataset on my google drive, please download the whole 'CCKS_2019_Task1

Xiang WU 55 Dec 21, 2022
My course projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU)

ML2021Spring There are my projects for the 2021 Spring Machine Learning course at the National Taiwan University (NTU) Course Web : https://speech.ee.

Ding-Li Chen 15 Aug 29, 2022
Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting (ICCV, 2021)

DKPNet ICCV 2021 Variational Attention: Propagating Domain-Specific Knowledge for Multi-Domain Learning in Crowd Counting Baseline of DKPNet is availa

19 Oct 14, 2022
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022
Multi-Modal Fingerprint Presentation Attack Detection: Evaluation On A New Dataset

PADISI USC Dataset This repository analyzes the PADISI-Finger dataset introduced in Multi-Modal Fingerprint Presentation Attack Detection: Evaluation

USC ISI VISTA Computer Vision 6 Feb 06, 2022
Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion"

MKGFormer Code for the SIGIR 2022 paper "Hybrid Transformer with Multi-level Fusion for Multimodal Knowledge Graph Completion" Model Architecture Illu

ZJUNLP 68 Dec 28, 2022
A library for low-memory inferencing in PyTorch.

Pylomin Pylomin (PYtorch LOw-Memory INference) is a library for low-memory inferencing in PyTorch. Installation ... Usage For example, the following c

3 Oct 26, 2022
Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Implementations of the algorithms in the paper Approximative Algorithms for Multi-Marginal Optimal Transport and Free-Support Wasserstein Barycenters

Johannes von Lindheim 3 Oct 29, 2022
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
Iranian Cars Detection using Yolov5s, PyTorch

Iranian Cars Detection using Yolov5 Train 1- git clone https://github.com/ultralytics/yolov5 cd yolov5 pip install -r requirements.txt 2- Dataset ../

Nahid Ebrahimian 22 Dec 05, 2022
Baselines for TrajNet++

TrajNet++ : The Trajectory Forecasting Framework PyTorch implementation of Human Trajectory Forecasting in Crowds: A Deep Learning Perspective TrajNet

VITA lab at EPFL 183 Jan 05, 2023
Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation

Discriminative Region Suppression for Weakly-Supervised Semantic Segmentation (AAAI 2021) Official pytorch implementation of our paper: Discriminative

Beom 74 Dec 27, 2022
A modular PyTorch library for optical flow estimation using neural networks

A modular PyTorch library for optical flow estimation using neural networks

neu-vig 113 Dec 20, 2022
PERIN is Permutation-Invariant Semantic Parser developed for MRP 2020

PERIN: Permutation-invariant Semantic Parsing David Samuel & Milan Straka Charles University Faculty of Mathematics and Physics Institute of Formal an

ÚFAL 40 Jan 04, 2023
Official implementation of Self-supervised Graph Attention Networks (SuperGAT), ICLR 2021.

SuperGAT Official implementation of Self-supervised Graph Attention Networks (SuperGAT). This model is presented at How to Find Your Friendly Neighbor

Dongkwan Kim 127 Dec 28, 2022
Gradient Step Denoiser for convergent Plug-and-Play

Source code for the paper "Gradient Step Denoiser for convergent Plug-and-Play"

Samuel Hurault 11 Sep 17, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
Bagua is a flexible and performant distributed training algorithm development framework.

Bagua is a flexible and performant distributed training algorithm development framework.

786 Dec 17, 2022