State-to-Distribution (STD) Model

Related tags

Deep LearningSTD
Overview

State-to-Distribution (STD) Model

In this repository we provide exemplary code on how to construct and evaluate a state-to-distribution (STD) model for a reactive atom-diatom collision system.

Requirements

  • python 3.7
  • TensorFlow 2.4
  • SciKit-learn 0.20

Setting up the environment

We recommend to use Miniconda for the creation of a virtual environment.

Once in miniconda, you can create a virtual enviroment called StD from the .yml file with the following command

conda env create --file StD.yml

On the same file, there is a version of the required packages. Additionally, a .txt file is included, if this is used the necessary command for the creation of the environment is:

conda create --file StD.txt 

To activate the virtual environment use the command:

conda activate StD

You are ready to run the code.

Predict product state distributions

For specific initial conditions

To predict product state distributions for fixed nitial conditions from the test set (77 data sets). Go to the evaluation_InitialCondition folder.

Don't remove (external_plotting directory).

python3 evaluate.py 

The evaluate.py file predicts product state distributions for all initial conditions within the test set and compares them with reference data obtained from quasi-classical trajectory similations (QCT).

Edit the code evaluation.py in the folder evaluation_InitialCondition to specify whether accuracy measures should be calculated based on comparison of the NN predictions and QCT data solely at the grid points where the NN places its predictions (flag "NN") or at all points where QCT data is available (flag "QCT") based on linear interpolation. Then run the code to obtain a file containing the desired accuracy measures, as well as a PDF with the corresponding plots. The evaluations are compared with available QCT data located in QCT_Data/Initial_Condition_Data.

For thermal reactant state dsitributions

To predict product state distributions from thermal reactant state distributions go to the evaluation_Temperature folder.

Edit the code evaluation.py in the folder evaluation_Temperature, to specify which of the four studied cases

  • Ttrans=Trot=Tvib (indices_set1.txt)
  • Ttrans != Tvib =Trot (indices_set2.txt)
  • Ttrans=Tvib != Trot (indices_set3.txt)
  • Ttrans != Tvib != Trot (indices_set4.txt)

you want to analyse.

Then run the code with the following command to obtain a file containing the desired accuracy measures, as well as a PDF with the corresponding plots for three example temperatures.

Don't remove (external_plotting directory).

python3 evaluate.py

The evaluations are compared with the available QCT data in QCT_Data/Temp_Data.

The complete list of temperatures and can be read from the file tinput.dat in data_preprocessing/TEMP/tinput.dat .

Cite as:

Julian Arnold, Debasish Koner, Juan Carlos San Vicente, Narendra Singh, Raymond J. Bemish, and Markus Meuwly,

!*Complete name of paper or do you want to cite the repository? Also, add an email or responsable*
Owner
[email protected]
Repository for free and open-source code developed by people from Markus Meuwly's group at university of Basel, Switzerland
<a href=[email protected]">
Code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language"

The repository provides the source code for the paper "Combining Textual Features for the Detection of Hateful and Offensive Language" submitted to HA

Sherzod Hakimov 3 Aug 04, 2022
A modular application for performing anomaly detection in networks

Deep-Learning-Models-for-Network-Annomaly-Detection The modular app consists for mainly three annomaly detection algorithms. The system supports model

Shivam Patel 1 Dec 09, 2021
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation

UniFuse (RAL+ICRA2021) Office source code of paper UniFuse: Unidirectional Fusion for 360$^\circ$ Panorama Depth Estimation, arXiv, Demo Preparation I

Alibaba 47 Dec 26, 2022
根据midi文件演奏“风物之诗琴”的脚本 "Windsong Lyre" auto play

Genshin-lyre-auto-play 简体中文 | English 简介 根据midi文件演奏“风物之诗琴”的脚本。由Python驱动,在此承诺, ⚠️ 项目内绝不含任何能够引起安全问题的代码。 前排提示:所有键盘在动但是原神没反应的都是因为没有管理员权限,双击run.bat或者以管理员模式

御坂17032号 386 Jan 01, 2023
PyTorch implementation of our method for adversarial attacks and defenses in hyperspectral image classification.

Self-Attention Context Network for Hyperspectral Image Classification PyTorch implementation of our method for adversarial attacks and defenses in hyp

22 Dec 02, 2022
Code for GNMR in ICDE 2021

GNMR Code for GNMR in ICDE 2021 Please unzip data files in Datasets/MultiInt-ML10M first. Run labcode_preSamp.py (with graph sampling) for ECommerce-c

7 Oct 27, 2022
Equivariant layers for RC-complement symmetry in DNA sequence data

Equi-RC Equivariant layers for RC-complement symmetry in DNA sequence data This is a repository that implements the layers as described in "Reverse-Co

7 May 19, 2022
Pairwise model for commonlit competition

Pairwise model for commonlit competition To run: - install requirements - create input directory with train_folds.csv and other competition data - cd

abhishek thakur 45 Aug 31, 2022
Jupyter notebooks for the code samples of the book "Deep Learning with Python"

Jupyter notebooks for the code samples of the book "Deep Learning with Python"

François Chollet 16.2k Dec 30, 2022
Bilinear attention networks for visual question answering

Bilinear Attention Networks This repository is the implementation of Bilinear Attention Networks for the visual question answering and Flickr30k Entit

Jin-Hwa Kim 506 Nov 29, 2022
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
Implementation of H-UCRL Algorithm

Implementation of H-UCRL Algorithm This repository is an implementation of the H-UCRL algorithm introduced in Curi, S., Berkenkamp, F., & Krause, A. (

Sebastian Curi 25 May 20, 2022
a simple, efficient, and intuitive text editor

Oxygen beta a simple, efficient, and intuitive text editor Overview oxygen is a simple, efficient, and intuitive text editor designed as more featured

Aarush Gupta 1 Feb 23, 2022
Real-Time-Student-Attendence-System - Real Time Student Attendence System

Real-Time-Student-Attendence-System The Student Attendance Management System Pro

Rounak Das 1 Feb 15, 2022
[ICCV 2021] Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation

MAED: Encoder-decoder with Multi-level Attention for 3D Human Shape and Pose Estimation Getting Started Our codes are implemented and tested with pyth

ZiNiU WaN 176 Dec 15, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

PyTorch Kafka Dataset: A definition of a dataset to get training data from Kafka.

ERTIS Research Group 7 Aug 01, 2022
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022