Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Overview

Let's Git - Versionsverwaltung & Open Source Hausaufgabe

Herzlich Willkommen zu dieser Hausaufgabe für unseren MOOC: Let's Git! Wir hoffen, dass Du viel lernen wirst und dabei auch Spaß hast.

In dieser Hausaufgabe wirst du eine Webseite zu deinem Lieblingscharakter aus Filmen oder Büchern erstellen. Hier kannst du zwei Beispiele betrachten: Beispiel 1 und Beispiel 2. Du wirst hier den Github Flow üben, aber das wirst du dann in den Aufgaben erkennen.

Um die Aufgabe zu starten, folge einfach folgenden Schritten:

  • Nutze dieses Repository als Vorlage für ein neues Repository und klicke auf „Use this template“, um das selbe Repository in deinen Repositories zu erstellen. Gib dem Repository beim Erstellen den Namen „<dein github name>.github.io“. Wenn dein Username zum Beispiel sanjsp ist, sollte das Repository sanjsp.github.io heißen
  • Gib dem neu erstellten Repository einen Stern. Falls du keinen Stern geben kannst, solltest du überprüfen, ob deine mit deinem GitHub Account verknüpfte Email Adresse verifiziert ist. Das kannst du bei den Einstellungen nachschauen.
  • Clone das Repository auf deinen Computer. Dafür gehst du oben in der Leiste auf Clone or Download und kopierst den Link des Repositories. Dann führst du in der Git Bash git clone (URL des Repositories) aus. Meine Eingabe sähe wie folgt aus: git clone https://github.com/SanJSp/sanjsp.github.io.git
  • Öffne die Webseite, die aus den Inhalten des Repositories generiert wird. Dafür gehst du im Browser auf \<dein github name\>.github.io. Bei mir wäre das sanjsp.github.io. Dort wirst du momentan einen Error 404 vorfinden. Allerdings kannst du nach dem Lösen jeder Aufgabe hier überprüfen, ob sich etwas geändert hat.
  • Mit der Zeit werden wir, in Form eines Bots, in deinem Repository neue Issues hinzufügen. Insgesamt gibt es fünf Aufgaben in Form von fünf unterschiedlichen Issues. Wenn du ein Issue erfolgreich gelöst hast, wird der Bot in deinem Pull Request ein Passwort für das Quiz auf openHPI kommentieren. Das sollst du dann für die entsprechende Aufgabe eingeben. Bearbeite nun die Issues und folge den Schritten, die in den Issues angegeben sind. Es kann manchmal ein wenig dauern (max. 5 Minuten), bis die Issues erstellt werden.

Die Webseite verändert sich immer, wenn auf dem master ein neuer Commit stattgefunden hat. Wenn du die Veränderungen anschauen möchtest, die du auf deinem feature-Branch erstellt hast, schau dir die index.md Datei in deinem Repository auf GitHub an. Bedenke, dass du auch auf GitHub den Branch wechseln kannst. Um deine Änderungen zu sehen musst du beim Betrachten der Index.md oben links deinen Branch auswählen. Nun kannst du sehen, was beim Formatieren der Inhalte nicht ganz funktioniert hat.

NaturalProofs: Mathematical Theorem Proving in Natural Language

NaturalProofs: Mathematical Theorem Proving in Natural Language NaturalProofs: Mathematical Theorem Proving in Natural Language Sean Welleck, Jiacheng

Sean Welleck 83 Jan 05, 2023
A Streamlit component to render ECharts.

Streamlit - ECharts A Streamlit component to display ECharts. Install pip install streamlit-echarts Usage This library provides 2 functions to display

Fanilo Andrianasolo 290 Dec 30, 2022
A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow.

ConvNeXt A Next Generation ConvNet by FaceBookResearch Implementation in PyTorch(Original) and TensorFlow. A FacebookResearch Implementation on A Conv

Raghvender 2 Feb 14, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
SHIFT15M: multiobjective large-scale fashion dataset with distributional shifts

[arXiv] The main motivation of the SHIFT15M project is to provide a dataset that contains natural dataset shifts collected from a web service IQON, wh

ZOZO, Inc. 138 Nov 24, 2022
Clustering with variational Bayes and population Monte Carlo

pypmc pypmc is a python package focusing on adaptive importance sampling. It can be used for integration and sampling from a user-defined target densi

45 Feb 06, 2022
Contenido del curso Bases de datos del DCC PUC versión 2021-2

IIC2413 - Bases de Datos Tabla de contenidos Equipo Profesores Ayudantes Contenidos Calendario Evaluaciones Resumen de notas Foro Política de integrid

54 Nov 23, 2022
Code release of paper "Deep Multi-View Stereo gone wild"

Deep MVS gone wild Pytorch implementation of "Deep MVS gone wild" (Paper | website) This repository provides the code to reproduce the experiments of

François Darmon 53 Dec 24, 2022
Codes for ACL-IJCNLP 2021 Paper "Zero-shot Fact Verification by Claim Generation"

Zero-shot-Fact-Verification-by-Claim-Generation This repository contains code and models for the paper: Zero-shot Fact Verification by Claim Generatio

Liangming Pan 47 Jan 01, 2023
Computer vision - fun segmentation experience using classic and deep tools :)

Computer_Vision_Segmentation_Fun Segmentation of Images and Video. Tools: pytorch Models: Classic model - GrabCut Deep model - Deeplabv3_resnet101 Flo

Mor Ventura 1 Dec 18, 2021
Code for "Unsupervised Layered Image Decomposition into Object Prototypes" paper

DTI-Sprites Pytorch implementation of "Unsupervised Layered Image Decomposition into Object Prototypes" paper Check out our paper and webpage for deta

40 Dec 22, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

A clean and extensible PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners A PyTorch re-implementation of Mask Autoencoder trai

Tianyu Hua 23 Dec 13, 2022
ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab

AliceMind AliceMind: ALIbaba's Collection of Encoder-decoders from MinD (Machine IntelligeNce of Damo) Lab This repository provides pre-trained encode

Alibaba 1.4k Jan 01, 2023
Training vision models with full-batch gradient descent and regularization

Stochastic Training is Not Necessary for Generalization -- Training competitive vision models without stochasticity This repository implements trainin

Jonas Geiping 32 Jan 06, 2023
SciFive: a text-text transformer model for biomedical literature

SciFive SciFive provided a Text-Text framework for biomedical language and natural language in NLP. Under the T5's framework and desrbibed in the pape

Long Phan 54 Dec 24, 2022
[ACL-IJCNLP 2021] "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets"

EarlyBERT This is the official implementation for the paper in ACL-IJCNLP 2021 "EarlyBERT: Efficient BERT Training via Early-bird Lottery Tickets" by

VITA 13 May 11, 2022
U-2-Net: U Square Net - Modified for paired image training of style transfer

U2-Net: U Square Net Modified for paired image training of style transfer This is an unofficial repo making use of the code which was made available b

Doron Adler 43 Oct 03, 2022
A Pytorch implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE

SMU_pytorch A Pytorch Implementation of SMU: SMOOTH ACTIVATION FUNCTION FOR DEEP NETWORKS USING SMOOTHING MAXIMUM TECHNIQUE arXiv https://arxiv.org/ab

Fuhang 36 Dec 24, 2022