[CVPR 2022] Official PyTorch Implementation for "Reference-based Video Super-Resolution Using Multi-Camera Video Triplets"

Overview

Reference-based Video Super-Resolution (RefVSR)
Official PyTorch Implementation of the CVPR 2022 Paper
Project | arXiv | RealMCVSR Dataset
Hugging Face Spaces License CC BY-NC
PWC

This repo contains training and evaluation code for the following paper:

Reference-based Video Super-Resolution Using Multi-Camera Video Triplets
Junyong Lee, Myeonghee Lee, Sunghyun Cho, and Seungyong Lee
POSTECH
IEEE Computer Vision and Pattern Recognition (CVPR) 2022


Getting Started

Prerequisites

Tested environment

Ubuntu Python PyTorch CUDA

1. Environment setup

$ git clone https://github.com/codeslake/RefVSR.git
$ cd RefVSR

$ conda create -y name RefVSR python 3.8 && conda activate RefVSR

# Install pytorch
$ conda install pytorch==1.11.0 torchvision==0.12.0 torchaudio==0.11.0 cudatoolkit=11.3 -c pytorch

# Install requirements
$ ./install/install_cudnn113.sh

It is recommended to install PyTorch >= 1.10.0 with CUDA11.3 for running small models using Pytorch AMP, because PyTorch < 1.10.0 is known to have a problem in running amp with torch.nn.functional.grid_sample() needed for inter-frame alignment.

For the other models, PyTorch 1.8.0 is verified. To install requirements with PyTorch 1.8.0, run ./install/install_cudnn102.sh for CUDA10.2 or ./install/install_cudnn111.sh for CUDA11.1

2. Dataset

Download and unzip the proposed RealMCVSR dataset under [DATA_OFFSET]:

[DATA_OFFSET]
    └── RealMCVSR
        ├── train                       # a training set
        │   ├── HR                      # videos in original resolution 
        │   │   ├── T                   # telephoto videos
        │   │   │   ├── 0002            # a video clip 
        │   │   │   │   ├── 0000.png    # a video frame
        │   │   │   │   └── ...         
        │   │   │   └── ...            
        │   │   ├── UW                  # ultra-wide-angle videos
        │   │   └── W                   # wide-angle videos
        │   ├── LRx2                    # 2x downsampled videos
        │   └── LRx4                    # 4x downsampled videos
        ├── test                        # a testing set
        └── valid                       # a validation set

[DATA_OFFSET] can be modified with --data_offset option in the evaluation script.

3. Pre-trained models

Download pretrained weights (Google Drive | Dropbox) under ./ckpt/:

RefVSR
├── ...
├── ./ckpt
│   ├── edvr.pytorch                    # weights of EDVR modules used for training Ours-IR
│   ├── SPyNet.pytorch                  # weights of SpyNet used for inter-frame alignment
│   ├── RefVSR_small_L1.pytorch         # weights of Ours-small-L1
│   ├── RefVSR_small_MFID.pytorch       # weights of Ours-small
│   ├── RefVSR_small_MFID_8K.pytorch    # weights of Ours-small-8K
│   ├── RefVSR_L1.pytorch               # weights of Ours-L1
│   ├── RefVSR_MFID.pytorch             # weights of Ours
│   ├── RefVSR_MFID_8K.pytorch.pytorch  # weights of Ours-8K
│   ├── RefVSR_IR_MFID.pytorch          # weights of Ours-IR
│   └── RefVSR_IR_L1.pytorch            # weights of Ours-IR-L1
└── ...

For the testing and training of your own model, it is recommended to go through wiki pages for
logging and details of testing and training scripts before running the scripts.

Testing models of CVPR 2022

Evaluation script

CUDA_VISIBLE_DEVICES=0 python -B run.py \
    --mode _RefVSR_MFID_8K \                       # name of the model to evaluate
    --config config_RefVSR_MFID_8K \               # name of the configuration file in ./configs
    --data RealMCVSR \                             # name of the dataset
    --ckpt_abs_name ckpt/RefVSR_MFID_8K.pytorch \  # absolute path for the checkpoint
    --data_offset /data1/junyonglee \              # offset path for the dataset (e.g., [DATA_OFFSET]/RealMCVSR)
    --output_offset ./result                       # offset path for the outputs

Real-world 4x video super-resolution (HD to 8K resolution)

# Evaluating the model 'Ours' (Fig. 8 in the main paper).
$ ./scripts_eval/eval_RefVSR_MFID_8K.sh

# Evaluating the model 'Ours-small'.
$ ./scripts_eval/eval_amp_RefVSR_small_MFID_8K.sh

For the model Ours, we use Nvidia Quadro 8000 (48GB) in practice.

For the model Ours-small,

  • We use Nvidia GeForce RTX 3090 (24GB) in practice.
  • It is the model Ours-small in Table 2 further trained with the adaptation stage.
  • The model requires PyTorch >= 1.10.0 with CUDA 11.3 for using PyTorch AMP.

Quantitative evaluation (models trained with the pre-training stage)

## Table 2 in the main paper
# Ours
$ ./scripts_eval/eval_RefVSR_MFID.sh

# Ours-l1
$ ./scripts_eval/eval_RefVSR_L1.sh

# Ours-small
$ ./scripts_eval/eval_amp_RefVSR_small_MFID.sh

# Ours-small-l1
$ ./scripts_eval/eval_amp_RefVSR_small_L1.sh

# Ours-IR
$ ./scripts_eval/eval_RefVSR_IR_MFID.sh

# Ours-IR-l1
$ ./scripts_eval/eval_RefVSR_IR_L1.sh

For all models, we use Nvidia GeForce RTX 3090 (24GB) in practice.

To obtain quantitative results measured with the varying FoV ranges as shown in Table 3 of the main paper, modify the script and specify --eval_mode FOV.

Training models with the proposed two-stage training strategy

The pre-training stage (Sec. 4.1)

# To train the model 'Ours':
$ ./scripts_train/train_RefVSR_MFID.sh

# To train the model 'Ours-small':
$ ./scripts_train/train_amp_RefVSR_small_MFID.sh

For both models, we use Nvidia GeForce RTX 3090 (24GB) in practice.

Be sure to modify the script file and set proper GPU devices, number of GPUs, and batch size by modifying CUDA_VISIBLE_DEVICES, --nproc_per_node and -b options, respectively.

  • We use the total batch size of 4, the multiplication of numbers in options --nproc_per_node and -b.

The adaptation stage (Sec. 4.2)

  1. Set the path of the checkpoint of a model trained with the pre-training stage.
    For the model Ours-small, for example,

    $ vim ./scripts_train/train_amp_RefVSR_small_MFID_8K.sh
    #!/bin/bash
    
    py3clean ./
    CUDA_VISIBLE_DEVICES=0,1 ...
        ...
        -ra [LOG_OFFSET]/RefVSR_CVPR2022/amp_RefVSR_small_MFID/checkpoint/train/epoch/ckpt/amp_RefVSR_small_MFID_00xxx.pytorch
        ...
    

    Checkpoint path is [LOG_OFFSET]/RefVSR_CVPR2022/[mode]/checkpoint/train/epoch/[mode]_00xxx.pytorch.

    • PSNR is recorded in [LOG_OFFSET]/RefVSR_CVPR2022/[mode]/checkpoint/train/epoch/checkpoint.txt.
    • [LOG_OFFSET] can be modified with config.log_offset in ./configs/config.py.
    • [mode] is the name of the model assigned with --mode in the script used for the pre-training stage.
  2. Start the adaptation stage.

    # Training the model 'Ours'.
    $ ./scripts_train/train_RefVSR_MFID_8K.sh
    
    # Training the model 'Ours-small'.
    $ ./scripts_train/train_amp_RefVSR_small_MFID_8K.sh

    For the model Ours, we use Nvidia Quadro 8000 (48GB) in practice.

    For the model Ours-small, we use Nvidia GeForce RTX 3090 (24GB) in practice.

    Be sure to modify the script file to set proper GPU devices, number of GPUs, and batch size by modifying CUDA_VISIBLE_DEVICES, --nproc_per_node and -b options, respectively.

    • We use the total batch size of 2, the multiplication of numbers in options --nproc_per_node and -b.

Training models with L1 loss

# To train the model 'Ours-l1':
$ ./scripts_train/train_RefVSR_L1.sh

# To train the model 'Ours-small-l1':
$ ./scripts_train/train_amp_RefVSR_small_L1.sh

# To train the model 'Ours-IR-l1':
$ ./scripts_train/train_amp_RefVSR_small_L1.sh

For all models, we use Nvidia GeForce RTX 3090 (24GB) in practice.

Be sure to modify the script file and set proper GPU devices, number of GPUs, and batch size by modifying CUDA_VISIBLE_DEVICES, --nproc_per_node and -b options, respectively.

  • We use the total batch size of 8, the multiplication of numbers in options --nproc_per_node and -b.

Wiki

Contact

Open an issue for any inquiries. You may also have contact with [email protected]

License

License CC BY-NC

This software is being made available under the terms in the LICENSE file. Any exemptions to these terms require a license from the Pohang University of Science and Technology.

Acknowledgment

We thank the authors of BasicVSR and DCSR for sharing their code.

BibTeX

@InProceedings{Lee2022RefVSR,
    author    = {Junyong Lee and Myeonghee Lee and Sunghyun Cho and Seungyong Lee},
    title     = {Reference-based Video Super-Resolution Using Multi-Camera Video Triplets},
    booktitle = {Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year      = {2022}
}
Owner
Junyong Lee
Ph.D. candidate at POSTECH
Junyong Lee
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023
ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels

ROCKET + MINIROCKET ROCKET: Exceptionally fast and accurate time series classification using random convolutional kernels. Data Mining and Knowledge D

298 Dec 26, 2022
A Light CNN for Deep Face Representation with Noisy Labels

A Light CNN for Deep Face Representation with Noisy Labels Citation If you use our models, please cite the following paper: @article{wulight, title=

Alfred Xiang Wu 715 Nov 05, 2022
Turning SymPy expressions into PyTorch modules.

sympytorch A micro-library as a convenience for turning SymPy expressions into PyTorch Modules. All SymPy floats become trainable parameters. All SymP

Patrick Kidger 89 Dec 13, 2022
SVG Icon processing tool for C++

BAWR This is a tool to automate the icons generation from sets of svg files into fonts and atlases. The main purpose of this tool is to add it to the

Frank David Martínez M 66 Dec 14, 2022
Official Pytorch implementation of C3-GAN

Official pytorch implemenation of C3-GAN Contrastive Fine-grained Class Clustering via Generative Adversarial Networks [Paper] Authors: Yunji Kim, Jun

NAVER AI 114 Dec 02, 2022
This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters.

openmc-plasma-source This python-based package offers a way of creating a parametric OpenMC plasma source from plasma parameters. The OpenMC sources a

Fusion Energy 10 Oct 18, 2022
Custom implementation of Corrleation Module

Pytorch Correlation module this is a custom C++/Cuda implementation of Correlation module, used e.g. in FlowNetC This tutorial was used as a basis for

Clément Pinard 361 Dec 12, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
Watch faces morph into each other with StyleGAN 2, StyleGAN, and DCGAN!

FaceMorpher FaceMorpher is an innovative project to get a unique face morph (or interpolation for geeks) on a website. Yes, this means you can see fac

Anish 9 Jun 24, 2022
Official PyTorch implementation of Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval.

Retrieve in Style: Unsupervised Facial Feature Transfer and Retrieval PyTorch This is the PyTorch implementation of Retrieve in Style: Unsupervised Fa

60 Oct 12, 2022
Full Stack Deep Learning Labs

Full Stack Deep Learning Labs Welcome! Project developed during lab sessions of the Full Stack Deep Learning Bootcamp. We will build a handwriting rec

Full Stack Deep Learning 1.2k Dec 31, 2022
FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation.

FastFCN: Rethinking Dilated Convolution in the Backbone for Semantic Segmentation [Project] [Paper] [arXiv] [Home] Official implementation of FastFCN:

Wu Huikai 815 Dec 29, 2022
ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D Data

ARKitScenes This repo accompanies the research paper, ARKitScenes - A Diverse Real-World Dataset for 3D Indoor Scene Understanding Using Mobile RGB-D

Apple 371 Jan 05, 2023
ICML 21 - Voice2Series: Reprogramming Acoustic Models for Time Series Classification

Voice2Series-Reprogramming Voice2Series: Reprogramming Acoustic Models for Time Series Classification International Conference on Machine Learning (IC

49 Jan 03, 2023
FlingBot: The Unreasonable Effectiveness of Dynamic Manipulations for Cloth Unfolding

This repository contains code for training and evaluating FlingBot in both simulation and real-world settings on a dual-UR5 robot arm setup for Ubuntu 18.04

Columbia Artificial Intelligence and Robotics Lab 70 Dec 06, 2022
Half Instance Normalization Network for Image Restoration

HINet Half Instance Normalization Network for Image Restoration, based on https://github.com/megvii-model/HINet. Dependencies NumPy PyTorch, preferabl

Holy Wu 4 Jun 06, 2022
Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology

Official repository for the ICLR 2021 paper Evaluating the Disentanglement of Deep Generative Models with Manifold Topology Sharon Zhou, Eric Zelikman

Stanford Machine Learning Group 34 Nov 16, 2022
Code to produce syntactic representations that can be used to study syntax processing in the human brain

Can fMRI reveal the representation of syntactic structure in the brain? The code base for our paper on understanding syntactic representations in the

Aniketh Janardhan Reddy 4 Dec 18, 2022