CoRe: Contrastive Recurrent State-Space Models

Related tags

Deep Learningml-core
Overview

CoRe: Contrastive Recurrent State-Space Models

This code implements the CoRe model and reproduces experimental results found in
Robust Robotic Control from Pixels using Contrastive Recurrent State-Space models
NeurIPS Deep Reinforcement Learning Workshop 2021
Nitish Srivastava, Walter Talbott, Martin Bertran Lopez, Shuangfei Zhai & Joshua M. Susskind
[paper]

cartpole

cheetah

walker

Requirements and Installation

Clone this repository and then execute the following steps. See setup.sh for an example of how to run these steps on a Ubuntu 18.04 machine.

  • Install dependencies.

    apt install -y libgl1-mesa-dev libgl1-mesa-glx libglew-dev \
            libosmesa6-dev software-properties-common net-tools unzip \
            virtualenv wget xpra xserver-xorg-dev libglfw3-dev patchelf xvfb ffmpeg
    
  • Download the DAVIS 2017 dataset. Make sure to select the 2017 TrainVal - Images and Annotations (480p). The training images will be used as distracting backgrounds. The DAVIS directory should be in the same directory as the code. Check that ls ./DAVIS/JPEGImages/480p/... shows 90 video directories.

  • Install MuJoCo 2.1.

    • Download MuJoCo version 2.1 binaries for Linux or macOS.
    • Unzip the downloaded mujoco210 directory into ~/.mujoco/mujoco210.
  • Install MuJoCo 2.0 (For robosuite experiments only).

    • Download MuJoCo version 2.0 binaries for Linux or macOS.
    • Unzip the downloaded directory and move it into ~/.mujoco/.
    • Symlink mujoco200_linux (or mujoco200_macos) to mujoco200.
    ln -s ~/.mujoco/mujoco200_linux ~/.mujoco/mujoco200
    
    • Place the license key at ~/.mujoco/mjkey.txt.
    • Add the MuJoCo binaries to LD_LIBRARY_PATH.
    export LD_LIBRARY_PATH=$HOME/.mujoco/mujoco200/bin:$LD_LIBRARY_PATH
    
  • Setup EGL GPU rendering (if a GPU is available).

    • To ensure that the GPU is prioritized over the CPU for EGL rendering
    cp 10_nvidia.json /usr/share/glvnd/egl_vendor.d/
    
    • Create a dummy nvidia directory so that mujoco_py builds the extensions needed for GPU rendering.
    mkdir -p /usr/lib/nvidia-000
    export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/lib/nvidia-000
    
  • Create a conda environment.

    For Distracting Control Suite

    conda env create -f conda_env.yml
    

    For Robosuite

    conda env create -f conda_env_robosuite.yml
    

Training

  • The CoRe model can be trained on the Distracting Control Suite as follows:

    conda activate core
    MUJOCO_GL=egl CUDA_VISIBLE_DEVICES=0 python train.py --config configs/dcs/core.yaml 
    

The training artifacts, including tensorboard logs and videos of validation rollouts will be written in ./artifacts/.

To change the distraction setting, modify the difficulty parameter in configs/dcs/core.yaml. Possible values are ['easy', 'medium', 'hard', 'none', 'hard_bg'].

To change the domain, modify the domain parameter in configs/dcs/core.yaml. Possible values are ['ball_in_cup', 'cartpole', 'cheetah', 'finger', 'reacher', 'walker'].

  • To train on Robosuite (Door Task, Franka Panda Arm)

    • Using RGB image and proprioceptive inputs.
    conda activate core_robosuite
    MUJOCO_GL=egl CUDA_VISIBLE_DEVICES=0 python train.py --config configs/robosuite/core.yaml
    
    • Using RGB image inputs only.
    conda activate core_robosuite
    MUJOCO_GL=egl CUDA_VISIBLE_DEVICES=0 python train.py --config configs/robosuite/core_imageonly.yaml
    

Citation

@article{srivastava2021core,
    title={Robust Robotic Control from Pixels using Contrastive Recurrent State-Space Models}, 
    author={Nitish Srivastava and Walter Talbott and Martin Bertran Lopez and Shuangfei Zhai and Josh Susskind},
    journal={NeurIPS Deep Reinforcement Learning Workshop},
    year={2021}
}

License

This code is released under the LICENSE terms.

Owner
Apple
Apple
[ICLR 2021] Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization

Heteroskedastic and Imbalanced Deep Learning with Adaptive Regularization Kaidi Cao, Yining Chen, Junwei Lu, Nikos Arechiga, Adrien Gaidon, Tengyu Ma

Kaidi Cao 29 Oct 20, 2022
Code for Multinomial Diffusion

Code for Multinomial Diffusion Abstract Generative flows and diffusion models have been predominantly trained on ordinal data, for example natural ima

104 Jan 04, 2023
It's a implement of this paper:Relation extraction via Multi-Level attention CNNs

Relation Classification via Multi-Level Attention CNNs It's a implement of this paper:Relation Classification via Multi-Level Attention CNNs. Training

Aybss 2 Nov 04, 2022
A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning

Officile code repository for "A Game-Theoretic Perspective on Risk-Sensitive Reinforcement Learning"

Mathieu Godbout 1 Nov 19, 2021
Game Agent Framework. Helping you create AIs / Bots that learn to play any game you own!

Serpent.AI - Game Agent Framework (Python) Update: Revival (May 2020) Development work has resumed on the framework with the aim of bringing it into 2

Serpent.AI 6.4k Jan 05, 2023
Simulation-based performance analysis of server-less Blockchain-enabled Federated Learning

Blockchain-enabled Server-less Federated Learning Repository containing the files used to reproduce the results of the publication "Blockchain-enabled

Francesc Wilhelmi 9 Sep 27, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
My personal Home Assistant configuration.

About This is my personal Home Assistant configuration. My guiding princile is to have full local control of all my devices. I intend everything to ru

Chris Turra 13 Jun 07, 2022
Build fully-functioning computer vision models with PyTorch

Detecto is a Python package that allows you to build fully-functioning computer vision and object detection models with just 5 lines of code. Inferenc

Alan Bi 576 Dec 29, 2022
Unofficial PyTorch implementation of Attention Free Transformer (AFT) layers by Apple Inc.

aft-pytorch Unofficial PyTorch implementation of Attention Free Transformer's layers by Zhai, et al. [abs, pdf] from Apple Inc. Installation You can i

Rishabh Anand 184 Dec 12, 2022
TrTr: Visual Tracking with Transformer

TrTr: Visual Tracking with Transformer We propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder a

趙 漠居(Zhao, Moju) 66 Dec 27, 2022
A project which aims to protect your privacy using inexpensive hardware and easily modifiable software

Protecting your privacy using an ESP32, an IR sensor and a python script This project, which I personally call the "never-gonna-catch-me-in-the-act-ev

8 Oct 10, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
Apply a perspective transformation to a raster image inside Inkscape (no need to use an external software such as GIMP or Krita).

Raster Perspective Apply a perspective transformation to bitmap image using the selected path as envelope, without the need to use an external softwar

s.ouchene 19 Dec 22, 2022
A synthetic texture-invariant dataset for object detection of UAVs

A synthetic dataset for object detection of UAVs This repository contains a synthetic datasets accompanying the paper Sim2Air - Synthetic aerial datas

LARICS Lab 10 Aug 13, 2022
A package, and script, to perform imaging transcriptomics on a neuroimaging scan.

Imaging Transcriptomics Imaging transcriptomics is a methodology that allows to identify patterns of correlation between gene expression and some prop

Alessio Giacomel 10 Dec 27, 2022
RANZCR-CLiP 7th Place Solution

RANZCR-CLiP 7th Place Solution This repository is WIP. (18 Mar 2021) Installation git clone https://github.com/analokmaus/kaggle-ranzcr-clip-public.gi

Hiroshechka Y 21 Oct 22, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021