The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

Related tags

Deep LearningHIST
Overview

The HIST framework for stock trend forecasting

The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information". image

Environment

  1. Install python3.7, 3.8 or 3.9.
  2. Install the requirements in requirements.txt.
  3. Install the Qlib and download the data:
    # install Qlib from source
    pip install --upgrade  cython
    git clone https://github.com/microsoft/qlib.git && cd qlib
    python setup.py install
    
    # Download the stock features of Alpha360
    python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --region cn --version v2
    

Reproduce the stock trend forecasting results

image

git clone https://github.com/Wentao-Xu/HIST.git
cd HIST
mkdir output

Reproduce our HIST framework

# CSI 100
python learn.py --model_name HIST --data_set csi100 --hidden_size 128 --num_layers 2 --outdir ./output/csi100_HIST

# CSI 300
python learn.py --model_name HIST --data_set csi300 --hidden_size 128 --num_layers 2 --outdir ./output/csi300_HIST

Reproduce the baselines

  • MLP
# MLP on CSI 100
python learn.py --model_name MLP --data_set csi100 --hidden_size 512 --num_layers 3 --outdir ./output/csi100_MLP

# MLP on CSI 300
python learn.py --model_name MLP --data_set csi300 --hidden_size 512 --num_layers 3 --outdir ./output/csi300_MLP
  • LSTM
# LSTM on CSI 100
python learn.py --model_name LSTM --data_set csi100 --hidden_size 128 --num_layers 2 --outdir ./output/csi100_LSTM

# LSTM on CSI 300
python learn.py --model_name LSTM --data_set csi300 --hidden_size 128 --num_layers 2 --outdir ./output/csi300_LSTM
  • GRU
# GRU on CSI 100
python learn.py --model_name GRU --data_set csi100 --hidden_size 128 --num_layers 2 --outdir ./output/csi100_GRU

# GRU on CSI 300
python learn.py --model_name GRU --data_set csi300 --hidden_size 64 --num_layers 2 --outdir ./output/csi300_GRU
  • SFM
# SFM on CSI 100
python learn.py --model_name SFM --data_set csi100 --hidden_size 64 --num_layers 2 --outdir ./output/csi100_SFM

# SFM on CSI 300
python learn.py --model_name SFM --data_set csi300 --hidden_size 128 --num_layers 2 --outdir ./output/csi300_SFM
  • GATs
# GATs on CSI 100
python learn.py --model_name GATs --data_set csi100 --hidden_size 128 --num_layers 2 --outdir ./output/csi100_GATs

# GATs on CSI 300
python learn.py --model_name GATs --data_set csi300 --hidden_size 64 --num_layers 2 --outdir ./output/csi300_GATs
  • ALSTM
# ALSTM on CSI 100
python learn.py --model_name ALSTM --data_set csi100 --hidden_size 64 --num_layers 2 --outdir ./output/csi100_ALSTM

# ALSTM on CSI 300
python learn.py --model_name ALSTM --data_set csi300 --hidden_size 128 --num_layers 2 --outdir ./output/csi300_ALSTM
  • Transformer
# Transformer on CSI 100
python learn.py --model_name Transformer --data_set csi100 --hidden_size 32 --num_layers 3 --outdir ./output/csi100_Transformer

# Transformer on CSI 300
python learn.py --model_name Transformer --data_set csi300 --hidden_size 32 --num_layers 3 --outdir ./output/csi300_Transformer
  • ALSTM+TRA

    We reproduce the ALSTM+TRA with its source code.

Owner
Wentao Xu
PhD Student in a Joint Program between MSRA and SYSU.
Wentao Xu
A pytorch implementation of the ACL2019 paper "Simple and Effective Text Matching with Richer Alignment Features".

RE2 This is a pytorch implementation of the ACL 2019 paper "Simple and Effective Text Matching with Richer Alignment Features". The original Tensorflo

287 Dec 21, 2022
The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question IntentionClassification Benchmark for Text-to-SQL"

TriageSQL The dataset and source code for our paper: "Did You Ask a Good Question? A Cross-Domain Question Intention Classification Benchmark for Text

Yusen Zhang 22 Nov 09, 2022
Next-gen Rowhammer fuzzer that uses non-uniform, frequency-based patterns.

Blacksmith Rowhammer Fuzzer This repository provides the code accompanying the paper Blacksmith: Scalable Rowhammering in the Frequency Domain that is

Computer Security Group @ ETH Zurich 173 Nov 16, 2022
Code for "LASR: Learning Articulated Shape Reconstruction from a Monocular Video". CVPR 2021.

LASR Installation Build with conda conda env create -f lasr.yml conda activate lasr # install softras cd third_party/softras; python setup.py install;

Google 157 Dec 26, 2022
Simplified interface for TensorFlow (mimicking Scikit Learn) for Deep Learning

SkFlow has been moved to Tensorflow. SkFlow has been moved to http://github.com/tensorflow/tensorflow into contrib folder specifically located here. T

3.2k Dec 29, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
Keras-retinanet - Keras implementation of RetinaNet object detection.

Keras RetinaNet Keras implementation of RetinaNet object detection as described in Focal Loss for Dense Object Detection by Tsung-Yi Lin, Priya Goyal,

Fizyr 4.3k Jan 01, 2023
This repository contains various models targetting multimodal representation learning, multimodal fusion for downstream tasks such as multimodal sentiment analysis.

Multimodal Deep Learning 🎆 🎆 🎆 Announcing the multimodal deep learning repository that contains implementation of various deep learning-based model

Deep Cognition and Language Research (DeCLaRe) Lab 398 Dec 30, 2022
Official implementation for "Style Transformer for Image Inversion and Editing" (CVPR 2022)

Style Transformer for Image Inversion and Editing (CVPR2022) https://arxiv.org/abs/2203.07932 Existing GAN inversion methods fail to provide latent co

Xueqi Hu 153 Dec 02, 2022
DiffQ performs differentiable quantization using pseudo quantization noise. It can automatically tune the number of bits used per weight or group of weights, in order to achieve a given trade-off between model size and accuracy.

Differentiable Model Compression via Pseudo Quantization Noise DiffQ performs differentiable quantization using pseudo quantization noise. It can auto

Facebook Research 145 Dec 30, 2022
NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch

NuPIC Studio is an all­-in-­one tool that allows users create a HTM neural network from scratch, train it, collect statistics, and share it among the members of the community. It is not just a visual

HTM Community 93 Sep 30, 2022
TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

TensorFlow Similarity is a python package focused on making similarity learning quick and easy.

912 Jan 08, 2023
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
Official repository for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'21, Oral Presentation)

Official PyTorch Implementation for HOTR: End-to-End Human-Object Interaction Detection with Transformers (CVPR'2021, Oral Presentation) HOTR: End-to-

Kakao Brain 114 Nov 28, 2022
Ludwig Benchmarking Toolkit

Ludwig Benchmarking Toolkit The Ludwig Benchmarking Toolkit is a personalized benchmarking toolkit for running end-to-end benchmark studies across an

HazyResearch 17 Nov 18, 2022
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently.

Adversarial Chess TensorFlow implementation of Style Transfer Generative Adversarial Networks: Learning to Play Chess Differently. Requirements To run

Muthu Chidambaram 30 Sep 07, 2021
Code to reproduce the results for Compositional Attention

Compositional-Attention This repository contains the official implementation for the paper Compositional Attention: Disentangling Search and Retrieval

Sarthak Mittal 58 Nov 30, 2022
Official implementation of Rethinking Graph Neural Architecture Search from Message-passing (CVPR2021)

Rethinking Graph Neural Architecture Search from Message-passing Intro The GNAS can automatically learn better architecture with the optimal depth of

Shaofei Cai 48 Sep 30, 2022