The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

Related tags

Deep LearningHIST
Overview

The HIST framework for stock trend forecasting

The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information". image

Environment

  1. Install python3.7, 3.8 or 3.9.
  2. Install the requirements in requirements.txt.
  3. Install the Qlib and download the data:
    # install Qlib from source
    pip install --upgrade  cython
    git clone https://github.com/microsoft/qlib.git && cd qlib
    python setup.py install
    
    # Download the stock features of Alpha360
    python scripts/get_data.py qlib_data --target_dir ~/.qlib/qlib_data/cn_data --region cn --version v2
    

Reproduce the stock trend forecasting results

image

git clone https://github.com/Wentao-Xu/HIST.git
cd HIST
mkdir output

Reproduce our HIST framework

# CSI 100
python learn.py --model_name HIST --data_set csi100 --hidden_size 128 --num_layers 2 --outdir ./output/csi100_HIST

# CSI 300
python learn.py --model_name HIST --data_set csi300 --hidden_size 128 --num_layers 2 --outdir ./output/csi300_HIST

Reproduce the baselines

  • MLP
# MLP on CSI 100
python learn.py --model_name MLP --data_set csi100 --hidden_size 512 --num_layers 3 --outdir ./output/csi100_MLP

# MLP on CSI 300
python learn.py --model_name MLP --data_set csi300 --hidden_size 512 --num_layers 3 --outdir ./output/csi300_MLP
  • LSTM
# LSTM on CSI 100
python learn.py --model_name LSTM --data_set csi100 --hidden_size 128 --num_layers 2 --outdir ./output/csi100_LSTM

# LSTM on CSI 300
python learn.py --model_name LSTM --data_set csi300 --hidden_size 128 --num_layers 2 --outdir ./output/csi300_LSTM
  • GRU
# GRU on CSI 100
python learn.py --model_name GRU --data_set csi100 --hidden_size 128 --num_layers 2 --outdir ./output/csi100_GRU

# GRU on CSI 300
python learn.py --model_name GRU --data_set csi300 --hidden_size 64 --num_layers 2 --outdir ./output/csi300_GRU
  • SFM
# SFM on CSI 100
python learn.py --model_name SFM --data_set csi100 --hidden_size 64 --num_layers 2 --outdir ./output/csi100_SFM

# SFM on CSI 300
python learn.py --model_name SFM --data_set csi300 --hidden_size 128 --num_layers 2 --outdir ./output/csi300_SFM
  • GATs
# GATs on CSI 100
python learn.py --model_name GATs --data_set csi100 --hidden_size 128 --num_layers 2 --outdir ./output/csi100_GATs

# GATs on CSI 300
python learn.py --model_name GATs --data_set csi300 --hidden_size 64 --num_layers 2 --outdir ./output/csi300_GATs
  • ALSTM
# ALSTM on CSI 100
python learn.py --model_name ALSTM --data_set csi100 --hidden_size 64 --num_layers 2 --outdir ./output/csi100_ALSTM

# ALSTM on CSI 300
python learn.py --model_name ALSTM --data_set csi300 --hidden_size 128 --num_layers 2 --outdir ./output/csi300_ALSTM
  • Transformer
# Transformer on CSI 100
python learn.py --model_name Transformer --data_set csi100 --hidden_size 32 --num_layers 3 --outdir ./output/csi100_Transformer

# Transformer on CSI 300
python learn.py --model_name Transformer --data_set csi300 --hidden_size 32 --num_layers 3 --outdir ./output/csi300_Transformer
  • ALSTM+TRA

    We reproduce the ALSTM+TRA with its source code.

Owner
Wentao Xu
PhD Student in a Joint Program between MSRA and SYSU.
Wentao Xu
[ICCV 2021 Oral] SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer

This repository contains the source code for the paper SnowflakeNet: Point Cloud Completion by Snowflake Point Deconvolution with Skip-Transformer (ICCV 2021 Oral). The project page is here.

AllenXiang 65 Dec 26, 2022
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
Stochastic Scene-Aware Motion Prediction

Stochastic Scene-Aware Motion Prediction [Project Page] [Paper] Description This repository contains the training code for MotionNet and GoalNet of SA

Mohamed Hassan 31 Dec 09, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
PyTorch Implementation for "ForkGAN with SIngle Rainy NIght Images: Leveraging the RumiGAN to See into the Rainy Night"

ForkGAN with Single Rainy Night Images: Leveraging the RumiGAN to See into the Rainy Night By Seri Lee, Department of Engineering, Seoul National Univ

Seri Lee 52 Oct 12, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
Official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution"

RealBasicVSR [Paper] This is the official repository of "Investigating Tradeoffs in Real-World Video Super-Resolution, arXiv". This repository contain

Kelvin C.K. Chan 566 Dec 28, 2022
An Industrial Grade Federated Learning Framework

DOC | Quick Start | 中文 FATE (Federated AI Technology Enabler) is an open-source project initiated by Webank's AI Department to provide a secure comput

Federated AI Ecosystem 4.8k Jan 09, 2023
PyTorch code for our paper "Gated Multiple Feedback Network for Image Super-Resolution" (BMVC2019)

Gated Multiple Feedback Network for Image Super-Resolution This repository contains the PyTorch implementation for the proposed GMFN [arXiv]. The fram

Qilei Li 66 Nov 03, 2022
🔥3D-RecGAN in Tensorflow (ICCV Workshops 2017)

3D Object Reconstruction from a Single Depth View with Adversarial Learning Bo Yang, Hongkai Wen, Sen Wang, Ronald Clark, Andrew Markham, Niki Trigoni

Bo Yang 125 Nov 26, 2022
ShuttleNet: Position-aware Fusion of Rally Progress and Player Styles for Stroke Forecasting in Badminton (AAAI'22)

ShuttleNet: Position-aware Rally Progress and Player Styles Fusion for Stroke Forecasting in Badminton (AAAI 2022) Official code of the paper ShuttleN

Wei-Yao Wang 11 Nov 30, 2022
The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

The trained model and denoising example for paper : Cardiopulmonary Auscultation Enhancement with a Two-Stage Noise Cancellation Approach

ycj_project 1 Jan 18, 2022
Fedlearn支持前沿算法研发的Python工具库 | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
Pytorch implementation of "A simple neural network module for relational reasoning" (Relational Networks)

Pytorch implementation of Relational Networks - A simple neural network module for relational reasoning Implemented & tested on Sort-of-CLEVR task. So

Kim Heecheol 800 Dec 05, 2022
Retrieval.pytorch - The code we used in [2020 DIGIX]

Retrieval.pytorch - The code we used in [2020 DIGIX]

Guo-Hua Wang 2 Feb 07, 2022
Deep Learning Visuals contains 215 unique images divided in 23 categories

Deep Learning Visuals contains 215 unique images divided in 23 categories (some images may appear in more than one category). All the images were originally published in my book "Deep Learning with P

Daniel Voigt Godoy 1.3k Dec 28, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it

Awesome Artificial Intelligence, Machine Learning and Deep Learning as we learn it. Study notes and a curated list of awesome resources of such topics.

mani 1.2k Jan 07, 2023
The dataset of tweets pulling from Twitters with keyword: Hydroxychloroquine, location: US, Time: 2020

HCQ_Tweet_Dataset: FREE to Download. Keywords: HCQ, hydroxychloroquine, tweet, twitter, COVID-19 This dataset is associated with the paper "Understand

2 Mar 16, 2022