Avatarify Python - Avatars for Zoom, Skype and other video-conferencing apps.

Overview

Avatarify Python

Photorealistic avatars for video-conferencing.

Avatarify Python requires manually downloading and installing some dependencies, and is therefore best suited for users who have some experience with command line applications. Avatarify Desktop, which aims to be easier to install and use, is recommended for most users. If you still want to use Avatarify Python, proceed to the install instructions.

Based on First Order Motion Model.

Avatarify Python is not affiliated with Avatarify Inc.

News

  • 7 Mar 2021. Renamed project to Avatarify Python to distinguish it from other versions of Avatarify
  • 14 December 2020. Released Avatarify Desktop. Check it out here.
  • 11 July 2020. Added Docker support. Now you can run Avatarify from Docker on Linux. Thanks to mikaelhg and mintmaker for contribution!
  • 22 May 2020. Added Google Colab mode. Now you can run Avatarify on any computer without GPU!
  • 7 May 2020. Added remote GPU support for all platforms (based on mynameisfiber's solution). Demo. Deployment instructions.
  • 24 April 2020. Added Windows installation tutorial.
  • 17 April 2020. Created Slack community. Please join via invitation link.
  • 15 April 2020. Added StyleGAN-generated avatars. Just press Q and now you drive a person that never existed. Every time you push the button – new avatar is sampled.
  • 13 April 2020. Added Windows support (kudos to 9of9).
Comments
  • Dockerize the

    Dockerize the "Remote GPU" service

    This PR needs some testing before merging, so I'm creating it as a draft.

    Based on my previous contribution to AliaksandrSiarohin/first-order-model#55.

    Building

    docker build -t avatarify .
    

    Running

    docker run -it --rm --gpus=all -p 5557:5557 -p 5558:5558 avatarify
    
    opened by mikaelhg 47
  • Broken pipe

    Broken pipe

    ffmpeg version 4.1.4-1build2 Copyright (c) 2000-2019 the FFmpeg developers
      built with gcc 9 (Ubuntu 9.2.1-4ubuntu1)
      configuration: --prefix=/usr --extra-version=1build2 --toolchain=hardened --libdir=/usr/lib/x86_64-linux-gnu --incdir=/usr/include/x86_64-linux-gnu --arch=amd64 --enable-gpl --disable-stripping --enable-avresample --disable-filter=resample --enable-avisynth --enable-gnutls --enable-ladspa --enable-libaom --enable-libass --enable-libbluray --enable-libbs2b --enable-libcaca --enable-libcdio --enable-libcodec2 --enable-libflite --enable-libfontconfig --enable-libfreetype --enable-libfribidi --enable-libgme --enable-libgsm --enable-libjack --enable-libmp3lame --enable-libmysofa --enable-libopenjpeg --enable-libopenmpt --enable-libopus --enable-libpulse --enable-librsvg --enable-librubberband --enable-libshine --enable-libsnappy --enable-libsoxr --enable-libspeex --enable-libssh --enable-libtheora --enable-libtwolame --enable-libvidstab --enable-libvorbis --enable-libvpx --enable-libwavpack --enable-libwebp --enable-libx265 --enable-libxml2 --enable-libxvid --enable-libzmq --enable-libzvbi --enable-lv2 --enable-omx --enable-openal --enable-opengl --enable-sdl2 --enable-libdc1394 --enable-libdrm --enable-libiec61883 --enable-chromaprint --enable-frei0r --enable-libx264 --enable-shared
      libavutil      56. 22.100 / 56. 22.100
      libavcodec     58. 35.100 / 58. 35.100
      libavformat    58. 20.100 / 58. 20.100
      libavdevice    58.  5.100 / 58.  5.100
      libavfilter     7. 40.101 /  7. 40.101
      libavresample   4.  0.  0 /  4.  0.  0
      libswscale      5.  3.100 /  5.  3.100
      libswresample   3.  3.100 /  3.  3.100
      libpostproc    55.  3.100 / 55.  3.100
    0: ./avatars/mona.jpg
    cam_fomm.py:26: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details.
      config = yaml.load(f)
    [mjpeg @ 0x561a4d0f8a00] Format mjpeg detected only with low score of 25, misdetection possible!
    Input #0, mjpeg, from 'pipe:0':                                                                                                                           
      Duration: N/A, bitrate: N/A
        Stream #0:0: Video: mjpeg, yuvj420p(pc, bt470bg/unknown/unknown), 640x480 [SAR 1:1 DAR 4:3], 25 tbr, 1200k tbn, 25 tbc
    Stream mapping:
      Stream #0:0 -> #0:0 (mjpeg (native) -> rawvideo (native))
    [swscaler @ 0x561a4d153040] deprecated pixel format used, make sure you did set range correctly
    [video4linux2,v4l2 @ 0x561a4d0fe680] ioctl(VIDIOC_G_FMT): Invalid argument                                                                                
    Could not write header for output file #0 (incorrect codec parameters ?): Invalid argument                                                                
    Error initializing output stream 0:0 --                                                                                                                   
    Conversion failed!                                                                                                                                        
    Traceback (most recent call last):
      File "cam_fomm.py", line 173, in <module>
        sys.stdout.buffer.write(buf)
    BrokenPipeError: [Errno 32] Broken pipe
    Exception ignored in: <_io.TextIOWrapper name='<stdout>' mode='w' encoding='utf-8'>
    BrokenPipeError: [Errno 32] Broken pipe
    
    opened by zuenko 42
  • Error when run

    Error when run "bash run.sh"

    Hi,

    I pull the last commit, executed again the install.sh and tryed run:

    bash run.sh

    But this error occours:

    (avatarify) [email protected]:~/Repository/others/avatarify$ bash run.sh 0: ./avatars/einstein.jpg 1: ./avatars/eminem.jpg 2: ./avatars/jobs.jpg 3: ./avatars/mona.jpg 4: ./avatars/obama.jpg 5: ./avatars/potter.jpg 6: ./avatars/ronaldo.png 7: ./avatars/schwarzenegger.png load checkpoints.. cam_fomm.py:34: YAMLLoadWarning: calling yaml.load() without Loader=... is deprecated, as the default Loader is unsafe. Please read https://msg.pyyaml.org/load for full details. config = yaml.load(f) Traceback (most recent call last): File "cam_fomm.py", line 231, in stream = pyfakewebcam.FakeWebcam(f'/dev/video{opt.virt_cam}', frame.shape[1], frame.shape[0]) File "/home/eltonnunes/.conda/envs/avatarify/lib/python3.8/site-packages/pyfakewebcam/pyfakewebcam.py", line 54, in init fcntl.ioctl(self._video_device, _v4l2.VIDIOC_S_FMT, self._settings) OSError: [Errno 22] Invalid argument

    Anyone can help ?

    My OS: Linux Mint 19.3 Cinnamon

    opened by eltonnuness 27
  • When run_windows.bat is finished, the two windows do not pop up. (avatarify does not launch)

    When run_windows.bat is finished, the two windows do not pop up. (avatarify does not launch)

    Describe the bug

    To Reproduce

    Info (please complete the following information):

    • OS (e.g., Linux):
    • GPU model:
    • Any other relevant information:

    Screenshots

    Logs

    duplicate 
    opened by board808 19
  • Getting multiple cam windows opened while running run.sh

    Getting multiple cam windows opened while running run.sh

    I am on latest Ubuntu I have installed correctly and updated everything but when I run bash run.sh then it didn't. Run so I run with sudo bash run.sh but so it sometime shows me avatar list to select and sometimes it open webcam and when I press X and configure my face than multiple cam windows start opening and I can't understand what's the issue and how to fix it please help me out

    opened by shwetkanwal24 19
  • Error with run_windows.bat

    Error with run_windows.bat

    RuntimeError: CUDA error: no kernel image is available for execution on the device

    I have a Windows 10 machine with Nvidia GTX Titan card. Nvidia says it supports CUDA 3.5 which I think is the minimum required?

    Also I read in the notes that it should fall to the CPU if the GPU isn't supported? How would I configure that if the card is the problem?

    opened by virtualmonster 17
  • No module named 'sync_batchnorm'

    No module named 'sync_batchnorm'

    Windows 10 system.

    Traceback (most recent call last): File "cam_fomm.py", line 13, in from sync_batchnorm import DataParallelWithCallback ModuleNotFoundError: No module named 'sync_batchnorm'

    opened by newtonke 17
  • Add overlay drawing of landmarks

    Add overlay drawing of landmarks

    Seeing the landmarks of both the current frame and the avatar can make it easier to get a good pose. I also thought it was interesting to expose a little of the underlying techniques

    opened by JohanAR 16
  • How to find the IP address of Google Colab Notebook

    How to find the IP address of Google Colab Notebook

    Hi, I want to run avatarify on macOS, but I need to use google colab... How do I find the IP address of the notebook so I can connect to the server? I tried to put the !curl ipecho.net/plain command in the notebook and I received an IP, but when I use this IP, the terminal is stuck on Receiving from.

    This is the google colab command:

    google_colab_command

    and this is what I see in the terminal: terminal

    opened by tvtr04 16
  • DLL load failed: The specified module could not be found.

    DLL load failed: The specified module could not be found.

    Error when running run_windows.bat

    File "cam_fomm.py", line 11, in import cv2 ImportError: DLL load failed: The specified module could not be found.

    Tried to install different opencv libraries to no avail. Any ideas how to solve this?

    more info needed 
    opened by kratadata 16
  • ModuleNotFoundError: No module named 'yaml'

    ModuleNotFoundError: No module named 'yaml'

    (base) E:\avatarify>run_windows.bat --is-client --in-addr tcp://2.tcp.eu.ngrok.io:10176 --out-addr tcp://0.tcp.eu.ngrok.io:12257 Traceback (most recent call last): File "afy/cam_fomm.py", line 4, in import yaml ModuleNotFoundError: No module named 'yaml'

    opened by fazelukario 15
  • Corrupt vox-adv-cpk.pth.tar

    Corrupt vox-adv-cpk.pth.tar

    Describe the bug

    initially the tar file has a 3 textbook icon but whenever I download it now it shows a regular file icon and that is the problem. Even if you move it into the right directory it’s still gonna show file not found

    Info (please complete the following information):

    • OS (windows 10 home):
    • GPU model: GeForce 1660 ti,windows 10 home, 6gb graphics
    • Any other relevant information:

    Screenshots

    Logs

    opened by Denvercraig 3
  • TROUBLE RUNNING AVATARIFY ON COLAB SERVER FOR MAC

    TROUBLE RUNNING AVATARIFY ON COLAB SERVER FOR MAC

    Hello guys, I really need a bit of help running Avatarify on the Google Colab server since I use a Mac. I already have Miniconda and unpacked the repositories in the Avatarify Folder. I was following the steps for running on google collab, everything was going just about right until the "start the worker" section of the code. Can anyone advise on what to do. I have a screenshot of th result attached to thisScreen Shot 2022-12-29 at 11 04 52 AM

    cloud gpu 
    opened by oveentheproduza 0
  • Avatar folder missing after forced shutdown

    Avatar folder missing after forced shutdown

    Laptop shutdown due to overheating, now I open avatarify.... it’s working fine but I can’t find the avatar folder to add new model or remove existing ones. I’ve search every where but nothing. Pls help.

    opened by Twabor 1
  • Python avatarify

    Python avatarify

    I have a problem, after I give the git clone command and equip it using the cd avatarify python command, I try to compile with the other command and this error returns me "avatarify python failed solving environment",what i do?

    opened by Bitchlinux 0
  • Error any time I try to run windows.bat

    Error any time I try to run windows.bat

    option --use-feature: invalid choice: '2020-resolver' (choose from "fast-deps', 'truststor che')

    I tried installing from scratch as I always does that work fine but now when I try ruining the scripts.windows.bat it gives me this at the end process

    opened by mandontsmile 11
Releases(v0.2.0)
Owner
Ali Aliev
Computer graphics
Ali Aliev
Implementation of PersonaGPT Dialog Model

PersonaGPT An open-domain conversational agent with many personalities PersonaGPT is an open-domain conversational agent cpable of decoding personaliz

ILLIDAN Lab 42 Jan 01, 2023
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
Repo for code associated with Modeling the Mitral Valve.

Project Title Mitral Valve Getting Started Repo for code associated with Modeling the Mitral Valve. See https://arxiv.org/abs/1902.00018 for preprint,

Alex Kaiser 1 May 17, 2022
[CVPR'21] DeepSurfels: Learning Online Appearance Fusion

DeepSurfels: Learning Online Appearance Fusion Paper | Video | Project Page This is the official implementation of the CVPR 2021 submission DeepSurfel

Online Reconstruction 52 Nov 14, 2022
i3DMM: Deep Implicit 3D Morphable Model of Human Heads

i3DMM: Deep Implicit 3D Morphable Model of Human Heads CVPR 2021 (Oral) Arxiv | Poject Page This project is the official implementation our work, i3DM

Tarun Yenamandra 60 Jan 03, 2023
RefineMask (CVPR 2021)

RefineMask: Towards High-Quality Instance Segmentation with Fine-Grained Features (CVPR 2021) This repo is the official implementation of RefineMask:

Gang Zhang 191 Jan 07, 2023
CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary.

CUP-DNN CUP-DNN is a deep neural network model used to predict tissues of origin for cancers of unknown of primary. The model was trained on the expre

1 Oct 27, 2021
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
The repo of Feedback Networks, CVPR17

Feedback Networks http://feedbacknet.stanford.edu/ Paper: Feedback Networks, CVPR 2017. Amir R. Zamir*,Te-Lin Wu*, Lin Sun, William B. Shen, Bertram E

Stanford Vision and Learning Lab 87 Nov 19, 2022
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
Supercharging Imbalanced Data Learning WithCausal Representation Transfer

ECRT: Energy-based Causal Representation Transfer Code for Supercharging Imbalanced Data Learning With Energy-basedContrastive Representation Transfer

Zidi Xiu 11 May 02, 2022
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
A strongly-typed genetic programming framework for Python

monkeys "If an army of monkeys were strumming on typewriters they might write all the books in the British Museum." monkeys is a framework designed to

H. Chase Stevens 115 Nov 27, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
JAX bindings to the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) library

JAX bindings to FINUFFT This package provides a JAX interface to (a subset of) the Flatiron Institute Non-uniform Fast Fourier Transform (FINUFFT) lib

Dan Foreman-Mackey 32 Oct 15, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer"

StyleAttack Code and data of the EMNLP 2021 paper "Mind the Style of Text! Adversarial and Backdoor Attacks Based on Text Style Transfer" Prepare Pois

THUNLP 19 Nov 20, 2022
Logistic Bandit experiments. Official code for the paper "Jointly Efficient and Optimal Algorithms for Logistic Bandits".

Code for the paper Jointly Efficient and Optimal Algorithms for Logistic Bandits, by Louis Faury, Marc Abeille, Clément Calauzènes and Kwang-Sun Jun.

Faury Louis 1 Jan 22, 2022
Code for DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning

DisCo: Remedy Self-supervised Learning on Lightweight Models with Distilled Contrastive Learning Pytorch Implementation for DisCo: Remedy Self-supervi

79 Jan 06, 2023