Welcome to The Eigensolver Quantum School, a quantum computing crash course designed by students for students.

Related tags

Deep LearningTEQS
Overview

TEQS

Welcome to The Eigensolver Quantum School, a crash course designed by students for students. The aim of this program is to take someone who has no QC knowledge and put through a five day crash course that puts them in the frame of mind necessary to learn via formal texts such as Nielsen and Chuang (which is the prize of our two day hackathon!)

TEQS Prerequisites

One of the beauties behind learning quantum computing is that on an elementary level, very few pre-requisites are required. At TEQS, the course is designed in a way where the only pre-requisites required are basic linear algebra and classical information processing. To ensure that everyone has those under their belts before attending the crash course, we made those three notebooks which we encourage everyone to read and solve the exercises.

  • Chapter 1 is on vectors and how they are used to represent the state of a qubit
  • Chapter 2 is on operators and how they are used to manipulate the state of a qubit
  • Chapter 3 is on Classical Information and Boolean Logic

Module Requirements

Lectures

Day 1:

Overview of mathematical prerequisites, brief introduction to quantum states and operators, and classical computing. Content available here.

Day 2:

Reduced quantum postulates from a quantum computing perspective and introduction to basic quantum circuits and simulators using Qiskit. Content available here.

Day 3:

The no-cloning theorem, quantum teleportation protocol, superdense coding, and BB84 cryptographic protocol. Content available here.

Day 4:

Quantum oracles, Deutsch's algorithm and how to construct a quantum circuit that implements them. Content available here.

Day 5:

IBM Quantum Fun Day! Introduction to RasQberry and Question and Answer Panel. Content available here.

Hackathon!

Welcome to the Eigensolvers Quantum School Hackathon! In the notebook found in this folder there are 4 problems covering all the material covered in the lectures. These problems have been designed for people coming from all different levels of experience in quantum computing. You will get a different certificate level based on the problems you completed:

  • First two: Beginner
  • First three: Intermediate
  • All four: Advanced

There are also prizes for the winners of the hackathon:

  • First Place: RasQberry - Premium
  • Second Place: RasQberry - All Inclusive
  • Third Place: RasQberry - Customizable DIY Kit
  • Fourth Place: Nielsen and Chuang

The ranking will be based on the weighted cost of the solutions for problem 3 and problem 4; as defined in the notebook.

To submit your solutions, fill out the form below, with the code that you write for each problem. https://forms.gle/KkA6gBbhrCZpWgnX8

The deadline for submission is Sunday (July 11th) 7pm Indian Standard Time. Remember, the ultimate goal is to have fun and learn some quantum computing while you're at it. All the best!

Owner
The Eigensolvers
The Eigensolvers
PoseViz – Multi-person, multi-camera 3D human pose visualization tool built using Mayavi.

PoseViz – 3D Human Pose Visualizer Multi-person, multi-camera 3D human pose visualization tool built using Mayavi. As used in MeTRAbs visualizations.

István Sárándi 79 Dec 30, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
Pytorch implementation of Compressive Transformers, from Deepmind

Compressive Transformer in Pytorch Pytorch implementation of Compressive Transformers, a variant of Transformer-XL with compressed memory for long-ran

Phil Wang 118 Dec 01, 2022
Code for "Retrieving Black-box Optimal Images from External Databases" (WSDM 2022)

Retrieving Black-box Optimal Images from External Databases (WSDM 2022) We propose how a user retreives an optimal image from external databases of we

joisino 5 Apr 13, 2022
PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021)

PyTorch code for the paper "Curriculum Graph Co-Teaching for Multi-target Domain Adaptation" (CVPR2021) This repo presents PyTorch implementation of M

Evgeny 79 Dec 19, 2022
Differentiable rasterization applied to 3D model simplification tasks

nvdiffmodeling Differentiable rasterization applied to 3D model simplification tasks, as described in the paper: Appearance-Driven Automatic 3D Model

NVIDIA Research Projects 336 Dec 30, 2022
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Unofficial Alias-Free GAN implementation. Based on rosinality's version with expanded training and inference options.

Alias-Free GAN An unofficial version of Alias-Free Generative Adversarial Networks (https://arxiv.org/abs/2106.12423). This repository was heavily bas

dusk (they/them) 75 Dec 12, 2022
Self-Supervised CNN-GCN Autoencoder

GCNDepth Self-Supervised CNN-GCN Autoencoder GCNDepth: Self-supervised monocular depth estimation based on graph convolutional network To be published

53 Dec 14, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Implementations of LSTM: A Search Space Odyssey variants and their training results on the PTB dataset.

An LSTM Odyssey Code for training variants of "LSTM: A Search Space Odyssey" on Fomoro. Check out the blog post. Training Install TensorFlow. Clone th

Fomoro AI 95 Apr 13, 2022
PyTorch implementation of ''Background Activation Suppression for Weakly Supervised Object Localization''.

Background Activation Suppression for Weakly Supervised Object Localization PyTorch implementation of ''Background Activation Suppression for Weakly S

35 Jan 06, 2023
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
Code for "Optimizing risk-based breast cancer screening policies with reinforcement learning"

Tempo: Optimizing risk-based breast cancer screening policies with reinforcement learning Introduction This repository was used to develop Tempo, as d

Adam Yala 12 Oct 11, 2022
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Supplementary code for TISMIR paper "Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form"

Sliding-Window Pitch-Class Histograms as a Means of Modeling Musical Form This is supplementary code for the TISMIR paper Sliding-Window Pitch-Class H

1 Nov 27, 2021
Official code of the paper "Expanding Low-Density Latent Regions for Open-Set Object Detection" (CVPR 2022)

OpenDet Expanding Low-Density Latent Regions for Open-Set Object Detection (CVPR2022) Jiaming Han, Yuqiang Ren, Jian Ding, Xingjia Pan, Ke Yan, Gui-So

csuhan 64 Jan 07, 2023
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators.

Jittor: a Just-in-time(JIT) deep learning framework Quickstart | Install | Tutorial | Chinese Jittor is a high-performance deep learning framework bas

2.7k Jan 03, 2023
Distance Encoding for GNN Design

Distance-encoding for GNN design This repository is the official PyTorch implementation of the DEGNN and DEAGNN framework reported in the paper: Dista

172 Nov 08, 2022