Parris, the automated infrastructure setup tool for machine learning algorithms.

Related tags

Deep LearningParris
Overview

README

Parris Icon

Parris, the automated infrastructure setup tool for machine learning algorithms.

What Is This Tool?

Parris is a tool for automating the training of machine learning algorithms. If you're the kind of person that works on ML algorithms and spends too much time setting up a server to run it on, having to log into it to monitor its progress, etc., then you will find this tool helpful. No need to SSH into instances to get your training jobs done!

Setup

You'll need an AWS account, AWS credentials loaded to your workstation (set up through $ aws configure), a machine learning algorithm to train, and of course a dataset that it can be trained on. You'll also likely want an S3 bucket or some other storage location for your algorithm's training results.

UNIX/Linux:

$ git clone https://github.com/jgreenemi/parris.git && cd parris
$ virtualenv -p python3 env
$ source env/bin/activate
(env) $ pip --version
pip 9.0.1 from .../env/lib/python3.6/site-packages (python 3.6)
(env) $ pip install -r requirements.txt 

Windows:

$ git clone https://github.com/jgreenemi/parris.git && cd parris
$ virtualenv -p python3.exe env
$ env\Scripts\activate
(env) $ pip --version
pip 9.0.1 from ...\python\python36\lib\site-packages (python 3.6)
(env) $ pip install -r requirements.txt 

How To Use

To use Parris, follow the Getting Started guide which will take you from setup all the way to launching your first ML training stack. While getting familiar with the tool you'll also want to consult the Configuration guide to better understand what options are available to you. This will help a lot in conjunction with the Getting Started guide.

FAQ

Consult the FAQ page in the documentation as many questions are answered there. If your question was not answered, please get in touch, either via a new Github Issue (preferred) or via an email below. The former is preferred as others with the same question can benefit from seeing the answer posted publicly.

Contributions

This tool is an open source project released under the Apache 2.0 license. Contributions from the community are more than welcome! Do consult the Issues page for known feature requests, roadmap items, and bugs you can work on.

Contact

Owner
Joseph Greene
I work on machine learning and software development challenges. Python, Kotlin. Formerly Amazon Halo, Amazon Go, and AWS!
Joseph Greene
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Fine-grained Control of Image Caption Generation with Abstract Scene Graphs

Faster R-CNN pretrained on VisualGenome This repository modifies maskrcnn-benchmark for object detection and attribute prediction on VisualGenome data

Shizhe Chen 7 Apr 20, 2021
Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning

Manifold-SCA Research Artifact of USENIX Security 2022 Paper: Automated Side Channel Analysis of Media Software with Manifold Learning The repo is org

Yuanyuan Yuan 172 Dec 29, 2022
Music Source Separation; Train & Eval & Inference piplines and pretrained models we used for 2021 ISMIR MDX Challenge.

Music Source Separation with Channel-wise Subband Phase Aware ResUnet (CWS-PResUNet) Introduction This repo contains the pretrained Music Source Separ

Lau 100 Dec 25, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021)

Understanding and Improving Encoder Layer Fusion in Sequence-to-Sequence Learning (ICLR 2021) Citation Please cite as: @inproceedings{liu2020understan

Sunbow Liu 22 Nov 25, 2022
Image Captioning on google cloud platform based on iot

Image-Captioning-on-google-cloud-platform-based-on-iot - Image Captioning on google cloud platform based on iot

Shweta_kumawat 1 Jan 20, 2022
Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

Accommodating supervised learning algorithms for the historical prices of the world's favorite cryptocurrency and boosting it through LightGBM.

1 Nov 27, 2021
Tools for computational pathology

A toolkit for computational pathology and machine learning. View documentation Please cite our paper Installation There are several ways to install Pa

254 Dec 12, 2022
The Environment I built to study Reinforcement Learning + Pokemon Showdown

pokemon-showdown-rl-environment The Environment I built to study Reinforcement Learning + Pokemon Showdown Been a while since I ran this. Think it is

3 Jan 16, 2022
Fashion Landmark Estimation with HRNet

HRNet for Fashion Landmark Estimation (Modified from deep-high-resolution-net.pytorch) Introduction This code applies the HRNet (Deep High-Resolution

SVIP Lab 91 Dec 26, 2022
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
Everything you want about DP-Based Federated Learning, including Papers and Code. (Mechanism: Laplace or Gaussian, Dataset: femnist, shakespeare, mnist, cifar-10 and fashion-mnist. )

Differential Privacy (DP) Based Federated Learning (FL) Everything about DP-based FL you need is here. (所有你需要的DP-based FL的信息都在这里) Code Tip: the code o

wenzhu 83 Dec 24, 2022
Official git for "CTAB-GAN: Effective Table Data Synthesizing"

CTAB-GAN This is the official git paper CTAB-GAN: Effective Table Data Synthesizing. The paper is published on Asian Conference on Machine Learning (A

30 Dec 26, 2022
FB-tCNN for SSVEP Recognition

FB-tCNN for SSVEP Recognition Here are the codes of the tCNN and FB-tCNN in the paper "Filter Bank Convolutional Neural Network for Short Time-Window

Wenlong Ding 12 Dec 14, 2022
An efficient framework for reinforcement learning.

rl: An efficient framework for reinforcement learning Requirements Introduction PPO Test Requirements name version Python =3.7 numpy =1.19 torch =1

16 Nov 30, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection.

WOOD Implementation of our recent paper, WOOD: Wasserstein-based Out-of-Distribution Detection. Abstract The training and test data for deep-neural-ne

8 Dec 24, 2022
Convnet transfer - Code for paper How transferable are features in deep neural networks?

How transferable are features in deep neural networks? This repository contains source code necessary to reproduce the results presented in the follow

Jason Yosinski 143 Sep 13, 2022
Semi-SDP Semi-supervised parser for semantic dependency parsing.

Semi-SDP Semi-supervised parser for semantic dependency parsing. This repo contains the code used for the semi-supervised semantic dependency parser i

12 Sep 17, 2021