This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

Overview

DCL-PyTorch

Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page.

Framework

Grounding Physical Concepts of Objects and Events Through Dynamic Visual Reasoning
Zhenfang Chen, Jiayuan Mao, Jiajun Wu, Kwan-Yee K. Wong, Joshua B. Tenenbaum, and Chuang Gan

Prerequisites

  • Python 3
  • PyTorch 1.0 or higher, with NVIDIA CUDA Support
  • Other required python packages specified by requirements.txt. See the Installation.

Installation

Install Jacinle: Clone the package, and add the bin path to your global PATH environment variable:

git clone https://github.com/vacancy/Jacinle --recursive
export PATH=<path_to_jacinle>/bin:$PATH

Clone this repository:

git clone https://github.com/zfchenUnique/DCL-Release.git --recursive

Create a conda environment for NS-CL, and install the requirements. This includes the required python packages from both Jacinle NS-CL. Most of the required packages have been included in the built-in anaconda package:

Dataset preparation

  • Download videos, video annotation, questions and answers, and object proposals accordingly from the official website
  • Transform videos into ".png" frames with ffmpeg.
  • Organize the data as shown below.
    clevrer
    ├── annotation_00000-01000
    │   ├── annotation_00000.json
    │   ├── annotation_00001.json
    │   └── ...
    ├── ...
    ├── image_00000-01000
    │   │   ├── 1.png
    │   │   ├── 2.png
    │   │   └── ...
    │   └── ...
    ├── ...
    ├── questions
    │   ├── train.json
    │   ├── validation.json
    │   └── test.json
    ├── proposals
    │   ├── proposal_00000.json
    │   ├── proposal_00001.json
    │   └── ...
    

Fast Evaluation

    git clone https://github.com/zfchenUnique/clevrer_dynamic_propnet.git
    cd clevrer_dynamic_propnet
    sh ./scripts/eval_fast_release_v2.sh 0
   sh scripts/script_test_prp_clevrer_qa.sh 0

Step-by-step Training

  • Step 1: download the proposals from the region proposal network and extract object trajectories for train and val set by
   sh scripts/script_gen_tubes.sh
  • Step 2: train a concept learner with descriptive and explanatory questions for static concepts (i.e. color, shape and material)
   sh scripts/script_train_dcl_stage1.sh 0
  • Step 3: extract static attributes & refine object trajectories extract static attributes
   sh scripts/script_extract_attribute.sh

refine object trajectories

   sh scripts/script_gen_tubes_refine.sh
  • Step 4: extract predictive and counterfactual scenes by
    cd clevrer_dynamic_propnet
    sh ./scripts/train_tube_box_only.sh # train
    sh ./scripts/train_tube.sh # train
    sh ./scripts/eval_fast_release_v2.sh 0 # val
  • Step 5: train DCL with all questions and the refined trajectories
   sh scripts/script_train_dcl_stage2.sh 0

Generalization to CLEVRER-Grounding

    sh ./scripts/script_grounding.sh  0
    jac-crun 0 scripts/script_evaluate_grounding.py

Generalization to CLEVRER-Retrieval

    sh ./scripts/script_retrieval.sh  0
    jac-crun 0 scripts/script_evaluate_retrieval.py

Extension to Tower Blocks

    sh ./scripts/script_train_blocks.sh 0
  • Step 3: download the pretrain model from google drive and evaluate on Tower block QA
    sh ./scripts/script_eval_blocks.sh 0

Others

Citation

If you find this repo useful in your research, please consider citing:

@inproceedings{zfchen2021iclr,
    title={Grounding Physical Concepts of Objects and Events Through Dynamic Visual Reasoning},
    author={Chen, Zhenfang and Mao, Jiayuan and Wu, Jiajun and Wong, Kwan-Yee K and Tenenbaum, Joshua B. and Gan, Chuang},
    booktitle={International Conference on Learning Representations},
    year={2021}
    }
Owner
Zhenfang Chen
Keep it simple.
Zhenfang Chen
Build a medical knowledge graph based on Unified Language Medical System (UMLS)

UMLS-Graph Build a medical knowledge graph based on Unified Language Medical System (UMLS) Requisite Install MySQL Server 5.6 and import UMLS data int

Donghua Chen 6 Dec 25, 2022
Educational API for 3D Vision using pose to control carton.

Educational API for 3D Vision using pose to control carton.

41 Jul 10, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
A tensorflow model that predicts if the image is of a cat or of a dog.

Quick intro Hello and thank you for your interest in my project! This is the backend part of a two-repo application. The other part can be found here

Tudor Matei 0 Mar 08, 2022
Multi-resolution SeqMatch based long-term Place Recognition

MRS-SLAM for long-term place recognition In this work, we imply an multi-resolution sambling based visual place recognition method. This work is based

METASLAM 6 Dec 06, 2022
tinykernel - A minimal Python kernel so you can run Python in your Python

tinykernel - A minimal Python kernel so you can run Python in your Python

fast.ai 37 Dec 02, 2022
A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised Learning

LABES This is the code for EMNLP 2020 paper "A Probabilistic End-To-End Task-Oriented Dialog Model with Latent Belief States towards Semi-Supervised L

17 Sep 28, 2022
MapReader: A computer vision pipeline for the semantic exploration of maps at scale

MapReader A computer vision pipeline for the semantic exploration of maps at scale MapReader is an end-to-end computer vision (CV) pipeline designed b

Living with Machines 25 Dec 26, 2022
Official implementation of Meta-StyleSpeech and StyleSpeech

Meta-StyleSpeech : Multi-Speaker Adaptive Text-to-Speech Generation Dongchan Min, Dong Bok Lee, Eunho Yang, and Sung Ju Hwang This is an official code

min95 168 Dec 28, 2022
Yoloxkeypointsegment - An anchor-free version of YOLO, with a simpler design but better performance

Introduction 关键点版本:已完成 全景分割版本:已完成 实例分割版本:已完成 YOLOX is an anchor-free version of

23 Oct 20, 2022
Dogs classification with Deep Metric Learning using some popular losses

Tsinghua Dogs classification with Deep Metric Learning 1. Introduction Tsinghua Dogs dataset Tsinghua Dogs is a fine-grained classification dataset fo

QuocThangNguyen 45 Nov 09, 2022
Build Graph Nets in Tensorflow

Graph Nets library Graph Nets is DeepMind's library for building graph networks in Tensorflow and Sonnet. Contact DeepMind 5.2k Jan 05, 2023

Accuracy Aligned. Concise Implementation of Swin Transformer

Accuracy Aligned. Concise Implementation of Swin Transformer This repository contains the implementation of Swin Transformer, and the training codes o

FengWang 77 Dec 16, 2022
API for RL algorithm design & testing of BCA (Building Control Agent) HVAC on EnergyPlus building energy simulator by wrapping their EMS Python API

RL - EmsPy (work In Progress...) The EmsPy Python package was made to facilitate Reinforcement Learning (RL) algorithm research for developing and tes

20 Jan 05, 2023
This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis

This is the code for ACL2021 paper A Unified Generative Framework for Aspect-Based Sentiment Analysis Install the package in the requirements.txt, the

108 Dec 23, 2022
Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device" @ CAD&Graphics2019

PortraitNet Code for the paper "PortraitNet: Real-time portrait segmentation network for mobile device". @ CAD&Graphics 2019 Introduction We propose a

265 Dec 01, 2022
KinectFusion implemented in Python with PyTorch

KinectFusion implemented in Python with PyTorch This is a lightweight Python implementation of KinectFusion. All the core functions (TSDF volume, fram

Jingwen Wang 80 Jan 03, 2023
Pytorch code for "State-only Imitation with Transition Dynamics Mismatch" (ICLR 2020)

This repo contains code for our paper State-only Imitation with Transition Dynamics Mismatch published at ICLR 2020. The code heavily uses the RL mach

20 Sep 08, 2022
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022