Implementation supporting the ICCV 2017 paper "GANs for Biological Image Synthesis"

Related tags

Deep Learningbiogans
Overview

GANs for Biological Image Synthesis

This codes implements the ICCV-2017 paper "GANs for Biological Image Synthesis". The paper and its supplementary materials is available on arXiv.

This code contains the following pieces:

  • implementation of DCGAN, WGAN, WGAN-GP
  • implementation of green-on-red separable DCGAN, multi-channel DCGAN, star-shaped DCGAN (see our ICCV 2017 paper for details)
  • implementation of the evaluation techniques: classifier two-samples test and reconstruction of the test set

The code is released under Apache v2 License allowing to use the code in any way you want. For the license on the LIN dataset, please contact the authors of Dodgson et al. (2017).

As a teaser, we show our final results (animated interpolations that mimic the cell growth cycle) right away: lin_movie2.gif lin_movie3.gif lin_movie1.gif

Citation

If you are using this software please cite the following paper in any resulting publication:

Anton Osokin, Anatole Chessel, Rafael E. Carazo Salas and Federico Vaggi, GANs for Biological Image Synthesis, in proceedings of the International Conference on Computer Vision (ICCV), 2017.

@InProceedings{osokin2017biogans,
author = {Anton Osokin and Anatole Chessel and Rafael E. Carazo Salas and Federico Vaggi},
title = {{GANs} for Biological Image Synthesis},
booktitle = {Proceedings of the International Conference on Computer Vision (ICCV)},
year = {2017} }

If you are using the LIN dataset, please, also cite this paper:

James Dodgson, Anatole Chessel, Federico Vaggi, Marco Giordan, Miki Yamamoto, Kunio Arai, Marisa Madrid, Marco Geymonat, Juan Francisco Abenza, Jose Cansado, Masamitsu Sato, Attila Csikasz-Nagy and Rafael E. Carazo Salas, Reconstructing regulatory pathways by systematically mapping protein localization interdependency networks, bioRxiv:11674, 2017

@article{Dodgson2017,
author = {Dodgson, James and Chessel, Anatole and Vaggi, Federico and Giordan, Marco and Yamamoto, Miki and Arai, Kunio and Madrid, Marisa and Geymonat, Marco and Abenza, Juan Francisco and Cansado, Jose and Sato, Masamitsu and Csikasz-Nagy, Attila and {Carazo Salas}, Rafael E},
title = {Reconstructing regulatory pathways by systematically mapping protein localization interdependency networks},
year = {2017},
journal = {bioRxiv:11674} }

Authors

Requirements

This software was written for python v3.6.1, pytorch v0.2.0 (earlier version won't work; later versions might face some backward compatibility issues, but should work), torchvision v0.1.8 (comes with pytorch). Many other python packages are required, but the standard Anaconda installation should be sufficient. The code was tested on Ubuntu 16.04 but should run on other systems as well.

Usage

This code release is aimed to reproduce the results of our ICCV 2017 paper. The experiments of this paper consist of the 4 main parts:

  • training and evaluating the models on the dataset by the 6 classes merged together
  • computing C2ST (classifier two-sample test) distances between real images of different classes
  • training and evaluating the models that support conditioning on the class labels
  • reconstructing images of the test set

By classes, we mean proteins imaged in the green channel. The 6 selected proteins include Alp14, Arp3, Cki2, Mkh1, Sid2, Tea1.

Note that rerunning all the experiements would require significant computational resources. We recommend using a cluster of GPU if you want to do that.

Preparations

Get the code

git clone https://github.com/aosokin/biogans.git

Mark the root folder for the code

cd biogans
export ROOT_BIOGANS=`pwd`

Download and unpack the dataset (438MB)

wget -P data http://www.di.ens.fr/sierra/research/biogans/LIN_Normalized_WT_size-48-80.zip
unzip data/LIN_Normalized_WT_size-48-80.zip -d data

If you are interested, there is a version with twice bigger images here (1.3GB).

Models for 6 classes merged together

Prepare the dataset and splits for evaluation

cd $ROOT_BIOGANS/experiments/models_6class_joint
./make_dataset_size-48-80_6class.sh
python make_splits_size-48-80_6class.py

If you just want to play with the trained models, we've release the ones at iteration 500k. You can dowload the model with these lines:

wget -P $ROOT_BIOGANS/models/size-48-80_6class_wgangp-adam http://www.di.ens.fr/sierra/research/biogans/models/size-48-80_6class_wgangp-adam/netG_iter_500000.pth
wget -P $ROOT_BIOGANS/models/size-48-80_6class_wgangp-sep-adam http://www.di.ens.fr/sierra/research/biogans/models/size-48-80_6class_wgangp-sep-adam/netG_iter_500000.pth
wget -P $ROOT_BIOGANS/models/size-48-80_6class_gan-adam http://www.di.ens.fr/sierra/research/biogans/models/size-48-80_6class_gan-adam/netG_iter_500000.pth
wget -P $ROOT_BIOGANS/models/size-48-80_6class_gan-sep-adam http://www.di.ens.fr/sierra/research/biogans/models/size-48-80_6class_gan-sep-adam/netG_iter_500000.pth
wget -P $ROOT_BIOGANS/models/size-48-80_6class_wgan-rmsprop http://www.di.ens.fr/sierra/research/biogans/models/size-48-80_6class_wgan-rmsprop/netG_iter_500000.pth
wget -P $ROOT_BIOGANS/models/size-48-80_6class_wgan-sep-rmsprop http://www.di.ens.fr/sierra/research/biogans/models/size-48-80_6class_wgan-sep-rmsprop/netG_iter_500000.pth

If you want to train the models yourself (might take a while), we used these scripts to get the models reported in our paper:

./train_size-48-80_6class_wgangp-adam.sh
./train_size-48-80_6class_wgangp-sep-adam.sh
./train_size-48-80_6class_gan-adam.sh
./train_size-48-80_6class_gan-sep-adam.sh
./train_size-48-80_6class_wgan-rmsprop.sh
./train_size-48-80_6class_wgan-sep-rmsprop.sh

To perform the full C2ST evaluation presented in Figure 8, generate the job scripts

python make_eval_jobs_size-48-80_6class_fake_vs_real.py
python make_eval_jobs_size-48-80_6class-together_real_vs_real.py

and run all the scripts in jobs_eval_6class_fake_vs_real and jobs_eval_6class-together_real_vs_real. If you are interested in something specific, please, pick the jobs that you want. After all the jobs run, one can redo our figures with analyze_eval_6class_fake_vs_real.ipynb and make_figures_3and4.ipynb.

C2ST for real vs. real images

Prepare the dataset and splits for evaluation

cd $ROOT_BIOGANS/experiments/real_vs_real
./make_dataset_size-48-80_8class.sh
python make_splits_size-48-80_8class.py
./make_splits_size-48-80_8class_real_vs_real.sh

Prepare all the jobs for evaluation

python make_eval_jobs_size-48-80_8class_real_vs_real.py

and runs all the scripts in jobs_eval_8class_real_vs_real. After this is done, you can reproduce Table 1 with analyze_eval_8class_real_vs_real.ipynb.

Models with conditioning on the class labels

Prepare the dataset and splits for evaluation

cd $ROOT_BIOGANS/experiments/models_6class_conditional
./make_dataset_size-48-80_6class_conditional.sh
./make_splits_size-48-80_6class_conditional.sh

If you just want to play with the trained models, we've release some of them at iteration 50k. You can dowload the model with these lines:

wget -P $ROOT_BIOGANS/models/size-48-80_6class_wgangp-star-shaped-adam http://www.di.ens.fr/sierra/research/biogans/models/size-48-80_6class_wgangp-star-shaped-adam/netG_iter_50000.pth
wget -P $ROOT_BIOGANS/models/size-48-80_6class_wgangp-independent-sep-adam http://www.di.ens.fr/sierra/research/biogans/models/size-48-80_6class_wgangp-independent-sep-adam/netG_iter_50000.pth

To train all the models from scratch, please, run these scripts:

./train_size-48-80_6class_wgangp-independent-adam.sh
./train_size-48-80_6class_wgangp-independent-sep-adam.sh
./train_size-48-80_6class_wgangp-multichannel-adam.sh
./train_size-48-80_6class_wgangp-multichannel-sep-adam.sh
./train_size-48-80_6class_wgangp-star-shaped-adam.sh

To train the multi-channel models, you additionally need to created the cache of nearest neighbors:

python $ROOT_BIOGANS/code/nearest_neighbors.py

Prepare evaluation scripts with

python make_eval_jobs_size-48-80_6class_conditional.py

and run all the scripts in jobs_eval_6class_conditional_fake_vs_real. After all of this is done, you can use analyze_eval_6class_star-shaped_fake_vs_real.ipynb, make_teaser.ipynb to reproduce Table 2 and Figure 1. The animated vizualizations and Figure 7 are done with cell_cycle_interpolation.ipynb.

Reconstructing the test set

Prepare the dataset and splits for evaluation

cd $ROOT_BIOGANS/experiments/models_6class_conditional
./make_dataset_size-48-80_6class_conditional.sh

If you just want to play with the trained models, we've release some of them at iteration 50k. You can dowload the model with these lines:

wget -P $ROOT_BIOGANS/models/size-48-80_6class_gan-star-shaped-adam http://www.di.ens.fr/sierra/research/biogans/models/size-48-80_6class_gan-star-shaped-adam/netG_iter_50000.pth
wget -P $ROOT_BIOGANS/models/size-48-80_6class_wgangp-star-shaped-adam http://www.di.ens.fr/sierra/research/biogans/models/size-48-80_6class_wgangp-star-shaped-adam/netG_iter_50000.pth
wget -P $ROOT_BIOGANS/models/size-48-80_6class_gan-independent-sep-adam http://www.di.ens.fr/sierra/research/biogans/models/size-48-80_6class_gan-independent-sep-adam/netG_iter_50000.pth
wget -P $ROOT_BIOGANS/models/size-48-80_6class_wgangp-independent-sep-adam http://www.di.ens.fr/sierra/research/biogans/models/size-48-80_6class_wgangp-independent-sep-adam/netG_iter_50000.pth

To train all the models from scratch, please, run these scripts:

./train_size-48-80_6class_wgangp-star-shaped-adam.sh
./train_size-48-80_6class_wgangp-independent-sep-adam.sh
./train_size-48-80_6class_wgangp-independent-adam.sh
./train_size-48-80_6class_gan-star-shaped-adam.sh
./train_size-48-80_6class_gan-independent-sep-adam.sh
./train_size-48-80_6class_gan-independent-adam.sh

To run all the reconstruction experiments, please, use these scripts:

./reconstruction_size-48-80_6class_wgangp-star-shaped-adam.sh
./reconstruction_size-48-80_6class_wgangp-independent-sep-adam.sh
./reconstruction_size-48-80_6class_wgangp-independent-adam.sh
./reconstruction_size-48-80_6class_gan-star-shaped-adam.sh
./reconstruction_size-48-80_6class_gan-independent-sep-adam.sh
./reconstruction_size-48-80_6class_gan-independent-adam.sh

After all of these done, you can reproduce Table 3 and Figures 6, 10 with analyze_reconstruction_errors.ipynb.

Owner
Anton Osokin
Anton Osokin
An implementation for Neural Architecture Search with Random Labels (CVPR 2021 poster) on Pytorch.

Neural Architecture Search with Random Labels(RLNAS) Introduction This project provides an implementation for Neural Architecture Search with Random L

18 Nov 08, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022
Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks

Discovering Dynamic Salient Regions with Spatio-Temporal Graph Neural Networks This is the official code for DyReg model inroduced in Discovering Dyna

Bitdefender Machine Learning 11 Nov 08, 2022
Power Core Simulator!

Power Core Simulator Power Core Simulator is a simulator based off the Roblox game "Pinewood Builders Computer Core". In this simulator, you can choos

BananaJeans 1 Nov 13, 2021
Explore extreme compression for pre-trained language models

Code for paper "Exploring extreme parameter compression for pre-trained language models ICLR2022"

twinkle 16 Nov 14, 2022
Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Keras implementation of Normalizer-Free Networks and SGD - Adaptive Gradient Clipping

Yam Peleg 63 Sep 21, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
A pytorch implementation of Reading Wikipedia to Answer Open-Domain Questions.

DrQA A pytorch implementation of the ACL 2017 paper Reading Wikipedia to Answer Open-Domain Questions (DrQA). Reading comprehension is a task to produ

Runqi Yang 394 Nov 08, 2022
Pytorch Performace Tuning, WandB, AMP, Multi-GPU, TensorRT, Triton

Plant Pathology 2020 FGVC7 Introduction A deep learning model pipeline for training, experimentaiton and deployment for the Kaggle Competition, Plant

Bharat Giddwani 0 Feb 25, 2022
Type4Py: Deep Similarity Learning-Based Type Inference for Python

Type4Py: Deep Similarity Learning-Based Type Inference for Python This repository contains the implementation of Type4Py and instructions for re-produ

Software Analytics Lab 45 Dec 15, 2022
So-ViT: Mind Visual Tokens for Vision Transformer

So-ViT: Mind Visual Tokens for Vision Transformer        Introduction This repository contains the source code under PyTorch framework and models trai

Jiangtao Xie 44 Nov 24, 2022
Companion repo of the UCC 2021 paper "Predictive Auto-scaling with OpenStack Monasca"

Predictive Auto-scaling with OpenStack Monasca Giacomo Lanciano*, Filippo Galli, Tommaso Cucinotta, Davide Bacciu, Andrea Passarella 2021 IEEE/ACM 14t

Giacomo Lanciano 0 Dec 07, 2022
A PyTorch implementation of "From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network" (ICCV2021)

From Two to One: A New Scene Text Recognizer with Visual Language Modeling Network The official code of VisionLAN (ICCV2021). VisionLAN successfully a

81 Dec 12, 2022
Code for Paper "Evidential Softmax for Sparse MultimodalDistributions in Deep Generative Models"

Evidential Softmax for Sparse Multimodal Distributions in Deep Generative Models Abstract Many applications of generative models rely on the marginali

Stanford Intelligent Systems Laboratory 9 Jun 06, 2022
An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models.

DeepNER An Easy-to-use, Modular and Prolongable package of deep-learning based Named Entity Recognition Models. This repository contains complex Deep

Derrick 9 May 30, 2022
The BCNet related data and inference model.

BCNet This repository includes the some source code and related dataset of paper BCNet: Learning Body and Cloth Shape from A Single Image, ECCV 2020,

81 Dec 12, 2022
DeepMReye: magnetic resonance-based eye tracking using deep neural networks

DeepMReye: magnetic resonance-based eye tracking using deep neural networks

73 Dec 21, 2022
PyTorch implementation of "Debiased Visual Question Answering from Feature and Sample Perspectives" (NeurIPS 2021)

D-VQA We provide the PyTorch implementation for Debiased Visual Question Answering from Feature and Sample Perspectives (NeurIPS 2021). Dependencies P

Zhiquan Wen 19 Dec 22, 2022
Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021.

NL-CSNet-Pytorch Pytorch code for paper "Image Compressed Sensing Using Non-local Neural Network" TMM 2021. Note: this repo only shows the strategy of

WenxueCui 7 Nov 07, 2022
Code for "Learning to Segment Rigid Motions from Two Frames".

rigidmask Code for "Learning to Segment Rigid Motions from Two Frames". ** This is a partial release with inference and evaluation code.

Gengshan Yang 157 Nov 21, 2022